Download Free Sustainable Urban Mining Of Precious Metals Book in PDF and EPUB Free Download. You can read online Sustainable Urban Mining Of Precious Metals and write the review.

The rapid revolution in modern industry has led to a significant increase in waste at the end of the product lifecycle. It is essential to close the loop, secure resources, and join up the circular economy. This book provides a detailed review of extraction techniques for urban mining of precious metals including gold, silver, and the platinum group. The merits and demerits of various extraction methods are highlighted, with possible suggestions for improvements. The feasibility of hybrid extraction techniques, as well as the sustainability and environmental impact of every process, is explored. Offers a comprehensive review of different techniques used in recycling technology for urban mining of precious metals Describes the concept of urban mining and its correlation with circular economy Discusses feasibility of precious metal extraction and urban mines scope and their potential Explains the subject in-context of sustainability while describing chemistry fundamentals and industrial practices Provides technical flow sheets for urban mining of precious metals with diversity of lixiviant This book is aimed at graduate students and researchers in extractive metallurgy, hydrometallurgy, chemical engineering, chemistry, and environmental engineering.
Scientific management strategies can help in exploring anthropogenic wastes (human-made materials) as potential resources through the urban mining concept and be a panacea for sustainable development. This book covers five broader aspects of waste management and resource recovery in urban mining including solid and liquid waste management and treatment. It explains sustainable approaches of urban mining for the effective management of solid and liquid wastes and facilitates their conversion into secondary resources. Overall, this book provides details of urban mining and its different applications including current waste management problems, practices, and challenges faced worldwide. Presents a holistic approach for urban mining considering various types of wastes Describes contemporary integrated approaches for waste management with specific case studies Provides technical, social, and environmental aspects of solid and liquid wastes Considers aspects of sustainability and a circular bio-economy Incorporates pertinent case studies on water and wastewater management This volume caters to researchers and graduate students in environmental engineering, solid waste management, wastewater treatment, and materials science.
The sustainable use of natural resources is an important global challenge, and improved metal sustainability is a crucial goal for the 21st century in order to conserve the supply of critical metals and mitigate the environmental and health issues resulting from unrecovered metals. Metal Sustainability: Global Challenges, Consequences and Prospects discusses important topics and challenges associated with sustainability in metal life cycles, from mining ore to beneficiation processes, to product manufacture, to recovery from end-of-life materials, to environmental and health concerns resulting from generated waste. The broad perspective presented highlights the global interdependence of the many stages of metal life cycles. Economic issues are emphasized and relevant environmental, health, political, industrial and societal issues are discussed. The importance of applying green chemistry principles to metal sustainability is emphasized. Topics covered include: • Recycling and sustainable utilization of precious and specialty metals • Formal and informal recycling from electronic and other high-tech wastes • Global management of electronic wastes • Metal reuse and recycling in developing countries • Effects of toxic and other metal releases on the environment and human health • Effect on bacteria of toxic metal release • Selective recovery of platinum group metals and rare earth metals • Metal sustainability from a manufacturing perspective • Economic perspectives on sustainability, mineral development, and metal life cycles • Closing the Loop – Minerals Industry Issues The aim of this book is to improve awareness of the increasingly important role metals play in our high-tech society, the need to conserve our metal supply throughout the metal life cycle, the importance of improved metal recycling, and the effects that unhindered metal loss can have on the environment and on human health.
The problems related to the process of industrialisation such as biodiversity depletion, climate change and a worsening of health and living conditions, especially but not only in developing countries, intensify. Therefore, there is an increasing need to search for integrated solutions to make development more sustainable. The United Nations has acknowledged the problem and approved the “2030 Agenda for Sustainable Development”. On 1st January 2016, the 17 Sustainable Development Goals (SDGs) of the Agenda officially came into force. These goals cover the three dimensions of sustainable development: economic growth, social inclusion and environmental protection. The Encyclopedia of the UN Sustainable Development Goals comprehensively addresses the SDGs in an integrated way. The Encyclopedia encompasses 17 volumes, each one devoted to one of the 17 SDGs. This volume addresses SDG 11, namely “Make cities and human settlements inclusive, safe, resilient and sustainable” and contains the description of a range of terms, which allows a better understanding and fosters knowledge. This book presents a set of papers on the state of the art of knowledge and practices about the numerous challenges for cities, solutions and opportunities for the future. Concretely, the defined targets are: Ensure access for all to adequate, safe and affordable housing and basic services and upgrade slums Provide access to safe, affordable, accessible and sustainable transport systems for all, improving road safety, notably by expanding public transport, with special attention to the needs of those in vulnerable situations, women, children, persons with disabilities and older persons Enhance inclusive and sustainable urbanization and capacity for participatory, integrated and sustainable human settlement planning and management in all countries Strengthen efforts to protect and safeguard the world’s cultural and natural heritage Significantly reduce the number of deaths and the number of people affected and substantially decrease the direct economic losses relative to global gross domestic product caused by disasters, including water-related disasters, with a focus on protecting the poor and people in vulnerable situations Reduce the adverse per capita environmental impact of cities, including by paying special attention to air quality and municipal and other waste management Provide universal access to safe, inclusive and accessible, green and public spaces, in particular for women and children, older persons and persons with disabilities Support positive economic, social and environmental links between urban, peri-urban and rural areas by strengthening national and regional development planning Substantially increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, resilience to disasters, and develop and implement, in line with the Sendai Framework for Disaster Risk Reduction 2015–2030, holistic disaster risk management at all levels Support least developed countries, including through financial and technical assistance, in building sustainable and resilient buildings utilizing local materials Editorial Board Samuel Borges Barbosa, Luciana Londero Brandli, Elisa Conticelli, Erin A. Hopkins, Olga Kuznetsova, Astrid Skjerven, Hari Srinivas
This collection focuses on energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The volume also covers various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers addressing renewable energy resources for metals and materials production, waste heat recovery and other industrial energy efficient technologies, new concepts or devices for energy generation and conversion, energy efficiency improvement in process engineering, sustainability and life cycle assessment of energy systems, as well as the thermodynamics and modeling for sustainable metallurgical processes are included. This volume also offers topics on CO2 sequestration and reduction in greenhouse gas emissions from process engineering, sustainable technologies in extractive metallurgy, as well as the materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Contributions from all areas of non-nuclear and non-traditional energy sources, such as solar, wind, and biomass are also included in this volume.Papers from the following symposia are presented in the book:Energy TechnologiesAdvances in Environmental Technologies: Recycling and Sustainability Joint SessionDeriving Value from Challenging Waste Materials: Recycling and Sustainability Joint SessionSolar Cell Silicon
Handbook of Electronic Waste Management: International Best Practices and Case Studies begin with a brief summary of the environmental challenges associated with the approaches used in international e-waste handling. The book's authors offer a detailed presentation of e-waste handling methods that also includes examples to further demonstrate how they work in the real world. This is followed by data that reveals the geographies of e-waste flows at global, national and subnational levels. Users will find this resource to be a detailed presentation of e-waste estimation methods that also addresses both the handling of e-waste and their hazardous effect on the surrounding environment. - Includes case studies to illustrate the implementation of innovative e-waste treatment technologies - Provides methods for designing and managing e-waste management networks in accordance with regulations, fulfilment obligations and process efficiency - Reference guide for adapting traditional waste management methods and handling practices to the handling and storage of electronic waste until disposal - Provides e-waste handling solutions for both urban and rural perspectives
This book gathers selected high-quality research papers presented at the IconSWM 2018 conference, which explore various aspects of urban mining. In addition, they discuss how to achieve sustainable waste management systems, urban mining, landfill mining, material recovery, circular economy, etc., with the aid of effective waste management practices. Additional topics covered include maximum resource circulation and efficiency, key differences between landfill mining and urban mining, and how urban mining can be combined with the concepts of circular economy and sustainability.
Sustainable practices within the mining and energy sectors are assuming greater significance due to uncertainty and change within the global economy and safety, security, and health concerns. This book examines sustainability issues facing the mining and energy sectors by addressing six major themes: Mining and Mineral Processing; Metallurgy and Recycling; Environment; Energy; Socioeconomic and Regulatory; and Sustainable Materials and Fleets. Emphasizing an integrated transdisciplinary approach, it deliberates on optimizing mining productivity and energy efficiency and discusses integrated waste management practices. It discusses risk management, cost cutting, and integration of sustainable practices for long-term business value. It gives a comprehensive outlook for sustainable mineral futures from academic and industry perspectives covering mine to mill optimization, waste, risk and water management, improved efficiencies in mining tools and equipment, and performance indicators for sustainable developments. It covers how innovation and research underpin management of natural resources including sustainable carbon management. •Focuses on mining and mineral processing, metallurgy and recycling, the environment, energy, socioeconomic and regulatory issues, and sustainable materials and fleets. •Describes metallurgy and recycling and uses economic, environmental and social parameter analyses to identify areas for improvement in iron, steel, aluminium, lead, zinc, copper, and gold production. •Discusses current research on mining, performance indicators for sustainable development, sustainability in mining equipment, risk and safety management, and renewable energy resources •Covers alternative and conventional energy sources for the mineral sector as well water treatment and remediation and energy sustainability in mining. •Provides an overview of sustainable carbon management. •Offers an interdisciplinary approach with international focus.
Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste streams.
In this book, experts engage in an extended dialogue arguing for a comprehensive view of sustainability. They emphasize the constraints imposed by the relationships among the components, for example, how the need for clean, easily accessible water intersects with the need for the energy required to provide it. This book urges a transformation in the way we view sustainability, a transformation that is necessary if we are to plan responsibly for a more sustainable world.--[book jacket].