Download Free Sustainable Technologies For Energy Efficient Buildings Book in PDF and EPUB Free Download. You can read online Sustainable Technologies For Energy Efficient Buildings and write the review.

Practical solutions for sustainability In this timely guide, one of the world's leaders in advanced building technology implementation shows architects and engineers proven and practical methods for implementing these technologies in sustainably-designed buildings. Because of the very limited time architects are given from being awarded a project to concept design, this book offers clear and workable solutions for implementing solar energy, radiant heating and cooling floors, displacement ventilation, net zero, and more. It provides helpful tips and suggestions for architects and engineers to work together on implementing these technologies, along with many innovative possibilities for developing a truly integrated design. This book also explores and explains the many benefits of advanced technologies, including reduced greenhouse gas emissions, lower operating costs, noise reduction, improved indoor air quality, and more. In addition, Advanced Building Technologies for Sustainability: Offers detailed coverage of solar energy systems, thermal energy storage, geothermal systems, high-performance envelopes, chilled beams, under-floor air distribution, displacement induction units, and much more Provides case studies of projects using advanced technologies and demonstrates their implementation in a variety of contexts and building types Covers the implementation of advanced technologies in office towers, large residential buildings, hospitals, schools, dormitories, theaters, colleges, and more Complete with a clear and insightful explanation of the requirements for and benefits of acquiring the U.S. Green Building Council's LEED certification, Advanced Building Technologies for Sustainability is an important resource for architects, engineers, developers, and contractors involved in sustainable projects using advanced technologies.
This book presents cutting-edge work on the energy efficiency and environmental sustainability of buildings, examining EU policies, regulations and technologies for complex systems such as passive buildings, sustainable buildings and, as part of the Energy Performance of Building Directive (EPBD), nearly Zero Energy Buildings (nZEB) requirements. It explores a wide range of topics, including indoor environment requirements, building physics, in-situ experiments to determine the thermal properties of buildings, nZEB requirements, building service technology, and methods of evaluating energy efficiency and environmental impacts. It also provides an overview of the best available technologies for nZEB, including those for the rational use of energy, utilization of renewable energy sources, EPBD systems and calculation methods. This book is a valuable resource for students, researchers and practitioners of urban planning, and architecture, civil and mechanical engineering.
Sustainable Construction Technologies: Life-Cycle Assessment provides practitioners with a tool to help them select technologies that are financially advantageous even though they have a higher initial cost. Chapters provide an overview of LCA and how it can be used in conjunction with other indicators to manage construction. Topics covered include indoor environment quality, energy efficiency, transport, water reuse, materials, land use and ecology, and more. The book presents a valuable tool for construction professionals and researchers that want to apply sustainable construction techniques to their projects. Practitioners will find the international case studies and discussions of worldwide regulation and standards particularly useful. - Provides a framework for analyzing sustainable construction technologies and economic viability - Introduces key credit criteria for different sustainable construction technologies - Covers the most relevant construction areas - Includes technologies that can be employed during the process of construction, or to the product of the construction process, i.e. buildings - Analyzes international rating systems and provides supporting case studies
Almost half of the total energy produced in the developed world is inefficiently used to heat, cool, ventilate and control humidity in buildings, to meet the increasingly high thermal comfort levels demanded by occupants. The utilisation of advanced materials and passive technologies in buildings would substantially reduce the energy demand and improve the environmental impact and carbon footprint of building stock worldwide.Materials for energy efficiency and thermal comfort in buildings critically reviews the advanced building materials applicable for improving the built environment. Part one reviews both fundamental building physics and occupant comfort in buildings, from heat and mass transport, hygrothermal behaviour, and ventilation, on to thermal comfort and health and safety requirements.Part two details the development of advanced materials and sustainable technologies for application in buildings, beginning with a review of lifecycle assessment and environmental profiling of materials. The section moves on to review thermal insulation materials, materials for heat and moisture control, and heat energy storage and passive cooling technologies. Part two concludes with coverage of modern methods of construction, roofing design and technology, and benchmarking of façades for optimised building thermal performance.Finally, Part three reviews the application of advanced materials, design and technologies in a range of existing and new building types, including domestic, commercial and high-performance buildings, and buildings in hot and tropical climates.This book is of particular use to, mechanical, electrical and HVAC engineers, architects and low-energy building practitioners worldwide, as well as to academics and researchers in the fields of building physics, civil and building engineering, and materials science. - Explores improving energy efficiency and thermal comfort through material selection and sustainable technologies - Documents the development of advanced materials and sustainable technologies for applications in building design and construction - Examines fundamental building physics and occupant comfort in buildings featuring heat and mass transport, hygrothermal behaviour and ventilation
Handbook of Energy Efficiency in Buildings: A Life Cycle Approach offers a comprehensive and in-depth coverage of the subject with a further focus on the Life Cycle. The editors, renowned academics, invited a diverse group of researchers to develop original chapters for the book and managed to well integrate all contributions in a consistent volume. Sections cover the role of the building sector on energy consumption and greenhouse gas emissions, international technical standards, laws and regulations, building energy efficiency and zero energy consumption buildings, the life cycle assessment of buildings, from construction to decommissioning, and other timely topics. The multidisciplinary approach to the subject makes it valuable for researchers and industry based Civil, Construction, and Architectural Engineers. Researchers in related fields as built environment, energy and sustainability at an urban scale will also benefit from the books integrated perspective. - Presents a complete and thorough coverage of energy efficiency in buildings - Provides an integrated approach to all the different elements that impact energy efficiency - Contains coverage of worldwide regulation
This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organized by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings include invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimization and modeling techniques, information and communication technology usage, behavior and practice, including applications.
This book is the result of recent research that deals with the built environment and innovative materials, carried out by specialists working in universities and centers of research in different professional fields ─ architecture, engineering, physics ─ and in an area that that spans from the Mediterranean Sea to the Persian Gulf, and from South Eastern Europe to the Middle East. This book takes the necessity of re-shaping the concept of building design in order to transform buildings from large scale energy consumers to energy savers and producers into consideration. The book is organized in two parts: theory and case studies. For the theoretical part, we chose from the wide range of sources that provide energy efficient materials and systems the two that seem to be endless: the sun and vegetation. Their use in building products represents a tool for specialists in the architectural design concept. The case-studies presented analyze different architectural programs, in different climates, from new buildings to rehabilitation approaches and from residential architecture to hospitals and sports arenas; each case emphasizes the interdisciplinarity of the building design activity in order to help readers gain a better understanding of the complex approach needed for energy efficient building design
"This book addresses the different perspectives of energy consumption and demand to ensure sustainable energy, increased energy efficiency, improved energy policies and reasonable energy costs"--
Your building has the potential to change the world. Existing buildings consume approximately 40 percent of the energy and emit nearly half of the carbon dioxide in the US each year. In recognition of the significant contribution of buildings to climate change, the idea of building green has become increasingly popular. But is it enough? If an energy-efficient building is new construction, it may take 10 to 80 years to overcome the climate change impacts of the building process. New buildings are sexy, but few realize the value in existing buildings and how easy it is to get to “zero energy” or low-energy consumption through deep energy retrofits. Existing buildings can and should be retrofit to reduce environmental impacts that contribute to climate change, while improving human health and productivity for building occupants. In The Power of Existing Buildings, academic sustainability expert Robert Sroufe, and construction and building experts Craig Stevenson and Beth Eckenrode, explain how to realize the potential of existing buildings and make them perform like new. This step-by-step guide will help readers to: understand where to start a project; develop financial models and realize costs savings; assemble an expert team; and align goals with numerous sustainability programs. The Power of Existing Buildings will challenge you to rethink spaces where people work and play, while determining how existing buildings can save the world. The insights and practical experience of Sroufe, Stevenson, and Eckenrode, along with the project case study examples, provide new insights on investing in existing buildings for building owners, engineers, occupants, architects, and real estate and construction professionals. The Power of Existing Buildings helps decision-makers move beyond incremental changes to holistic, results-oriented solutions.
This long-awaited reference guide provides a complete overview of low energy cooling systems for buildings, covering a wide range of existing and emerging sustainable energy technologies in one comprehensive volume. An excellent data source on cooling performance, such as building loads or solar thermal chiller efficiencies, it is essential reading for building services and renewable energy engineers and researchers covering sustainable design. The book is unique in including a large set of experimental results from years of monitoring actual building and energy plants, as well as detailed laboratory and simulation analyses. These demonstrate which systems really work in buildings, what the real costs are and how operation can be optimized – crucial information for planners, builders and architects to gain confidence in applying new technologies in the building sector. Inside you will find valuable insights into: the energy demand of residential and office buildings; facades and summer performance of buildings; passive cooling strategies; geothermal cooling; active thermal cooling technologies, including absorption cooling, desiccant cooling and new developments in low power chillers; sustainable building operation using simulation. Supporting case study material makes this a useful text for senior undergraduate students on renewable and sustainable energy courses. Practical and informative, it is the best up-to-date volume on the important and rapidly growing area of cooling.