Download Free Sustainable Horizons Eco Friendly Architecture For A Better Future Book in PDF and EPUB Free Download. You can read online Sustainable Horizons Eco Friendly Architecture For A Better Future and write the review.

There are enormous and difficult challenges on a global scale, and we are living in a time when these problems are occurring. Sometimes people would refer to them as "wicked problems." As a result of the interconnected nature of these issues and the prevalence of value systems and points of view that are in opposition to one another, it is challenging to describe, comprehend, and find solutions to these complex and systemic challenges. In the present moment, we are confronted with a number of the most severe challenges that may be traced back to human activities that are not sustainable. We refer to this period of time as the "Anthropocene," which is a geological era that has been developed to acknowledge the tremendous influence that human activities are having on the processes and systems of the Earth. This era was established in order to acknowledge the "Anthropocene." Since the Industrial Revolution, which took place in the latter half of the eighteenth century, human activities have had a significant and far-reaching impact on the systems that make up the Earth. The climate of the Earth has been affected as a result of these activities, as has the chemistry of the land and ocean, and the biodiversity of the globe has been diminished via these activities. It is anticipated that the environmental modifications that have been brought about by human activity will have far-reaching repercussions, some of which could be catastrophic, for the entire planet and the people who live on these planets. In spite of this, the challenges are not restricted to problems pertaining to the environment. These difficulties have gotten even more intricate as a result of their connectivity with social, economic, and peace and security concerns
A practical framework for thinking about the future... and an exploration of 'future consciousness' and how to develop it
An important consideration for energy-efficient buildings is their primary energy requirements over the entire life cycle. How to determine this? What integrative factors influence the performance of a healthy and sustainable building? This, while it may be important for clients and architects to know, is frequently not very transparent. This book has been written to assist with clarifying target criteria and expanding horizons when it comes to ecological buildings. It is meant as a handbook and source of reference for clients, architects, planners and building operators, to provide them with pertinent information about their design, construction and operation: how to do this in the most energy-efficient and economical manner? Also, there is feedback and documentation about prominent buildings like the Hamburg Dockland or the Landesbank Baden-Wuerttemberg in Stuttgart. They provide excellent architectural examples for detailed construction and design solutions. Further, there are insightful interviews with architects and clients about many important buildings, which help turn this book into an integrated source of reference for sustainable architecture. - A Guideline for Planning, Construction and Operation of sustainable Buildings - A source of reference for clients, architects, planners and building operators - Innovative architectural examples with sustainable concepts and design
Sustainable Construction Technologies: Life-Cycle Assessment provides practitioners with a tool to help them select technologies that are financially advantageous even though they have a higher initial cost. Chapters provide an overview of LCA and how it can be used in conjunction with other indicators to manage construction. Topics covered include indoor environment quality, energy efficiency, transport, water reuse, materials, land use and ecology, and more. The book presents a valuable tool for construction professionals and researchers that want to apply sustainable construction techniques to their projects. Practitioners will find the international case studies and discussions of worldwide regulation and standards particularly useful. - Provides a framework for analyzing sustainable construction technologies and economic viability - Introduces key credit criteria for different sustainable construction technologies - Covers the most relevant construction areas - Includes technologies that can be employed during the process of construction, or to the product of the construction process, i.e. buildings - Analyzes international rating systems and provides supporting case studies
NEW YORK TIMES BESTSELLER NATIONAL BESTSELLER In this urgent, singularly authoritative book, Bill Gates sets out a wide-ranging, practical--and accessible--plan for how the world can get to zero greenhouse gas emissions in time to avoid an irreversible climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help and guidance of experts in the fields of physics, chemistry, biology, engineering, political science and finance, he has focused on exactly what must be done in order to stop the planet's slide toward certain environmental disaster. In this book, he not only gathers together all the information we need to fully grasp how important it is that we work toward net-zero emissions of greenhouse gases but also details exactly what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. He describes the areas in which technology is already helping to reduce emissions; where and how the current technology can be made to function more effectively; where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete plan for achieving the goal of zero emissions--suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but by following the guidelines he sets out here, it is a goal firmly within our reach.
“Net Zero” has been an effective rallying cry for the green building movement, signaling a goal of having every building generate at least as much energy as it uses. Enormous strides have been made in improving the performance of every type of new building, and even more importantly, renovating the vast and energy-inefficient collection of existing buildings in every country. If we can get every building to net-zero energy use in the next few decades, it will be a huge success, but it will not be enough. In Build Beyond Zero, carbon pioneers Bruce King and Chris Magwood re-envision buildings as one of our most practical and affordable climate solutions instead of leading drivers of climate change. They provide a snapshot of a beginning and map towards a carbon-smart built environment that acts as a CO2 filter. Professional engineers, designers, and developers are invited to imagine the very real potential for our built environment to be a site of net carbon storage, a massive drawdown pool that could help to heal our climate. The authors, with the help of other industry experts, show the importance of examining what components of an efficient building (from windows to solar photovoltaics) are made with, and how the supply chains deliver all those products and materials to a jobsite. Build Beyond Zero looks at the good and the bad of how we track carbon (Life Cycle Assessment), then takes a deep dive into materials (with a focus on steel and concrete) and biological architecture, and wraps up with education, policy and governance, circular economy, and where we go in the next three decades. In Build Beyond Zero, King and Magwood show how buildings are culprits but stand poised to act as climate healers. They offer an exciting vision of climate-friendly architecture, along with practical advice for professionals working to address the carbon footprint of our built environment.
This book discusses the challenges related to climate change mitigation and adaptation. It adds valuable strategies and insights into the development of new practices solving the identified social and economic problems related to ecosystem deterioration and anticipating other disasters related to climate change. As the decarbonization of cities and communities became an issue of great interest to many researchers, the book in hand is of great importance to decision-makers and energy stakeholders and others seeking a more resilient and sustainable future and developing innovative technologies to overcome environmental deterioration. This book is a culmination of selected research papers from the first version of the international conference on ‘Climate Change and Environmental Sustainability’ which was held in 2022 in collaboration with Chongqing University, China.
A one-stop guide to the future of sustainable energy production The search for sustainable energy sources powered by renewable, non-fossil fuel resources is one of the great scientific challenges of the era. Microorganisms such as bacteria and algae have been shown to function as the basis of a microbial fuel cell, which can operate independently of an electrical power grid on the basis of renewable feed sources. These fuel cells have shown applications ranging from powering implantable biomedical devices to purifying rural water sources, and many more. Microbial Electrochemical Technologies offers a one-stop shop for researchers and developers of technologies incorporating these microbial fuel cells. Beginning with the fundamental processes involved in microbial energy production and the key components of a bioelectrochemical system (BES), it then surveys the major BES types and crucial aspects of technological development and commercialization. The result is an indispensable introduction to these vital power sources and their myriad applications. Microbial Electrochemical Technologies readers will also find: Detailed treatment of BES types including fuel cells, electrolysis and electrosynthesis cells, and more Discussion of commercialization aspects including modelling, performance analysis, and life cycle assessment An authorial team with decades of combined experience on three continents Microbial Electrochemical Technologies is a useful reference for electrochemists, microbiologists, biotechnologists, and bioengineers.
This book is intended to help explore the field of smart sustainable cities in its complexity, heterogeneity, and breadth, the many faces of a topical subject of major importance for the future that encompasses so much of modern urban life in an increasingly computerized and urbanized world. Indeed, sustainable urban development is currently at the center of debate in light of several ICT visions becoming achievable and deployable computing paradigms, and shaping the way cities will evolve in the future and thus tackle complex challenges. This book integrates computer science, data science, complexity science, sustainability science, system thinking, and urban planning and design. As such, it contains innovative computer–based and data–analytic research on smart sustainable cities as complex and dynamic systems. It provides applied theoretical contributions fostering a better understanding of such systems and the synergistic relationships between the underlying physical and informational landscapes. It offers contributions pertaining to the ongoing development of computer–based and data science technologies for the processing, analysis, management, modeling, and simulation of big and context data and the associated applicability to urban systems that will advance different aspects of sustainability. This book seeks to explicitly bring together the smart city and sustainable city endeavors, and to focus on big data analytics and context-aware computing specifically. In doing so, it amalgamates the design concepts and planning principles of sustainable urban forms with the novel applications of ICT of ubiquitous computing to primarily advance sustainability. Its strength lies in combining big data and context–aware technologies and their novel applications for the sheer purpose of harnessing and leveraging the disruptive and synergetic effects of ICT on forms of city planning that are required for future forms of sustainable development. This is because the effects of such technologies reinforce one another as to their efforts for transforming urban life in a sustainable way by integrating data–centric and context–aware solutions for enhancing urban systems and facilitating coordination among urban domains. This timely and comprehensive book is aimed at a wide audience across science, academia industry, and policymaking. It provides the necessary material to inform relevant research communities of the state–of–the–art research and the latest development in the area of smart sustainable urban development, as well as a valuable reference for planners, designers, strategists, and ICT experts who are working towards the development and implementation of smart sustainable cities based on big data analytics and context–aware computing.
Blockchain has the potential to revolutionize how people and organizations, who may not know or trust each other, share information and carry out transactions online. Nearly every institution on the planet wants to be a leader in blockchain technology as well as a home to significant platforms, applications, and companies. There is a need for a glocal policy to meet and support these goals as blockchain technology must embrace glocal values and ideals in its legal and regulatory frameworks. Glocal Policy and Strategies for Blockchain: Building Ecosystems and Sustainability discusses the features and advantages of blockchain technology, the innovative applications of blockchain technology, and the potent and limited aspects of blockchain technology. Covering topics such as digital change, international policy, and cyber security governance, this reference work is ideal for industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.