Download Free Sustainable Ethanol And Climate Change Book in PDF and EPUB Free Download. You can read online Sustainable Ethanol And Climate Change and write the review.

This book amalgamates the facts on carbon dioxide capture from ethanol fermentation of sugarcane molasses and its impact on climate changes. Learning objectives will be achieved through tables and figures that guide professional and students alike through a user-friendly format. The book presents advanced information on CO2 production from ethanol facilities, impact on climate changes and global warming. Utilization of CO2 in various chemical industries, carbonated beverage industry, and processing and preservation of food are illustrated. The book is equally invaluable to students of the relevant disciplines and to those taking more specialized climate change/sustainability courses. Industry employees involved in product development, production management and quality management will benefit as well. Academics in teaching, research and personnel involved in environment regulatory capacity should also find this book ideal for their use.
Sustainable Biofuels: Opportunities and challenges, a volume in the "Applied Biotechnology Reviews series, explores the state-of-the-art in research and applied technology for the conversion of all types of biofuels. Its chapters span a broad spectrum of knowledge, from fundamentals and technical aspects to optimization, combinations, economics, and environmental aspects. They cover various facets of research, production, and commercialization of bioethanol, biodiesel, biomethane, biohydrogen, biobutanol, and biojet fuel. This book discusses biochemical, thermochemical, and hydrothermal conversion of unconventional feedstocks, including the role of biotechnology applications to achieve efficiency and competitiveness. Through case studies, techno-economic analysis and sustainability assessment, including life cycle assessment, it goes beyond technical aspects to provides actual resources for better decision-making during the development of commercially viable technology by researchers, PhD students, and practitioners in the field of bioenergy. It is also a useful resource for those in adjacent areas, such as biotechnology, industrial microbiology, chemical engineering, environmental engineering, and sustainability science, who are working on solutions for the bioeconomy. The ability to compare different technologies and their outcome that this book provides is also beneficial for energy analysts, consultants, planners, and policy-makers. The "Applied Biotechnology Reviews series highlights current development and research in biotechnology-related fields, combining in single-volume works the theoretical aspects and real-world applications for better decision-making. - Covers current technologies and advancements in biochemical, thermochemical, and hydrothermal conversion methods for production of various types of biofuels from conventional and nonconventional feedstock - Examines biotechnology processes, including genetic engineering of microorganisms and substrates, applied to biofuel production - Bridges the gap between technology development and prospects of commercialization of bioprocesses, including policy and economics of biofuel production, biofuel value chains, and how to accomplish cost-competitive results and sustainable development
This open access book presents a comprehensive analysis of biofuel use strategies from an interdisciplinary perspective using sustainability science. This interdisciplinary perspective (social science-natural science) means that the strategies and policy options proposed will have significant impacts on the economy and society alike. Biofuels are expected to contribute to reducing greenhouse gas emissions, revitalizing economies in agricultural communities and alleviating poverty. However, despite these anticipated benefits, international organizations such as the FAO, OECD and UN have published reports expressing concerns that biofuel promotion may lead to deforestation, water pollution and water shortages. The impacts of biofuel use are extensive, cross-sectoral and complex, and as such, comprehensive analyses are required in order to assess the extent to which biofuels can contribute to sustainable societies. Applying interdisciplinary sustainability science concepts and methodologies, the book helps to enhance the establishment of a sustainable society as well as the development of appropriate responses to a global need for urgent action on current issues related to biofuels.
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.
In face of the increasingly obvious need to ensure the sustainability of the environment, alternative and renewable energy sources are no longer just the concern of environmentalists and have become commitments of governments virtually everywhere in the world. In this context, ethanol emerges as an excellent substitute for petroleum derivatives. This green alternative fuel is sustained by its own burning because when CO2 serves as a carbon source for the growth of plants, it will allow the carbohydrates to be fermented. In addition, currently different generations of this fuel are being proposed, considering the utilization of their own waste. However, challenges still need to be overcome to enable the second, third and fourth generations of ethanol. At the same time, other renewable fuel alternatives emerge to compete with it. The automobile industry, for example, has been developing new engines, hybrids or not, that can be powered by electricity or H2. In this regard, this book addresses, under different aspects, the main strategies to surpass the remaining obstacles, as well as the advantages and disadvantages of ethanol as a fuel of the future. In this context, the "Ethanol as a Green Alternative Fuel" book shows present and future scenarios about bioethanol and perspective in their chain, considering the economic and environmental impact mitigations approach.
Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems
This book focuses on the basic science recently produced in Brazil for the improvement of sugarcane as a bioenergy crop and as a raw material for 2nd generation bioethanol production. It reports achievements that have been advancing the science of cell walls, enzymes, genetics, and sustainability related to sugarcane technologies and give continuity to the research reported in the “Routes to Cellulosic Ethanol”, from Springer. The Introduction (Chapter I) explains how the National Institute of Science and Technology of Bioethanol, founded in 2008 in Brazil, became part of the main international initiatives that started to search for forms to use biomass for bioethanol production in Brazil, US and Europe. Part I reports the advances in plant cell wall composition, structure and architecture, and physical characteristics of sugarcane biomass. These discoveries are opening the way to increased efficiency of pretreatments and hydrolysis, being therefore important information for 2nd generation processes as well as for biorefinery initiatives. Part II focuses on the discovery and characterization of hydrolases from microorganisms that could be used in industrial processes. Recent advances in the search for hydrolases using metagenomics is reported. A great number of genes and enzymes from microorganisms have been discovered, affording improvement of enzyme cocktails better adapted to sugarcane biomass. Part III reports two key issues in the process of 2G ethanol, pentose fermentation and sugarcane genetics. These are the discoveries of new yeast species capable of producing ethanol more efficiently from xylose and the advances made on the sugarcane genetics, a key issue to design varieties adapted to 2G ethanol production. Part IV approaches sustainability through two chapters, one discussing the sustainability of the sugarcane agricultural and environmental system and another discussing how national and mainly international policies of Brazil regarding 2G ethanol production affected the country’s strategies to establish itself as an international player in renewable energy area.
An in-depth review of sustainable concepts in water resources management under climate change Climate change continues to intensify existing pressures in water resources management, such as rapid population growth, land use changes, pollution, damming of rivers, and many others. Securing a reliable water supply—critical for achieving Sustainable Development Goals (SDGs)—requires understanding of the relation between finite water resources, climate variability/change, and various elements of sustainability. Water, Climate Change, and Sustainability is a timely and in-depth examination of the concept of sustainability as it relates to water resources management in the context of climate change risks. Featuring contributions by global authors, this edited volume is organized into three sections: Sustainability Concepts; Sustainability Approaches, Tools, and Techniques; and Sustainability in Practice. Detailed chapters describe the linkage between water and sustainable development, highlight the development and use of new measuring and reporting methods, and discuss the implementation of sustainability concepts in various water use sectors. Topics include localizing and mainstreaming global water sustainability initiatives, resilient water infrastructure for poverty reduction, urban water security for sustainable cities, climate actions and challenges for sustainable ecosystem services, and more. This important resource: Reviews contemporary scientific research and practical applications in the areas of water, climate change and sustainability in different regions of the world Discusses future directions of research and practices in relation to expected patterns of climate changes Covers a wide range of concepts, theories, and perspectives of sustainable development of water resources Features case studies of field and modelling techniques for analyzing water resources and evaluating vulnerability, security, and associated risks Discusses practical applications of water resources in contexts such as food security, global health, clean energy, and climate action Water, Climate Change, and Sustainability is an invaluable resource for policy makers water managers, researchers, and other professionals in the field, and an ideal text for graduate students in hydrogeology, climate change, geophysics, geochemistry, geography, water resources, and environmental science.
Dwindling petroleum supplies and growing environmental concerns are significantly impacting the cost of petro-fuel and its infrastructure. The search for alternative fuel sources has led to ethanol, a gasoline substitute that is already in the marketplace as Gasohol and E-85. But large-scale production of corn-based ethanol is controversial as it threatens the world’s food supply. There are alternatives, however: Brazil uses sugar cane, which is up to six times more productive in energy conversion. After the energy crisis of the 1970s, there was a lot of misinformation about the cost of individual ethanol production. In order to achieve energy independence from gasoline, ethanol lends itself to small-scale production, and especially to cooperative ventures in rural communities, often using “waste” feedstock. Alcohol Fuel is a practical, grassroots book that will give readers all the information they need, covering every aspect of making and using ethanol for fuel, including: *Permitting and planning *Budgeting and setup *Sourcing feedstocks *Finding and building distillation equipment *Storage and safety *Practical applications for converting motor vehicles, farm equipment, and space-heating systems The practical, user-friendly information on basic equipment needs, fermentation recipes, and distillation designs will be of interest to readers looking for information, as well as to those ready to make the switch. Richard Freudenberger was research director of Mother Earth News, where he managed the Alcohol Fuel Program and developed solar and renewable solar and energy projects. He is publisher and technical editor of BackHome magazine and lives in Hendersonville, North Carolina.
The valuable characteristics of animal waste materials in terms of climatic change impact and bioenergy production are discussed in this book. Reutilization of such wastes for bioenergy harvest is the prime focus; the great need for future animal waste recycling is also depicted. Major topics discussed are types of livestock waste – poultry and dairy, methods and management of waste utilization and storage, application of animal waste in bioenergy production, economics of waste utilization, novel disposable techniques, circular bioeconomy, pollution, and water quality. Furthermore, utilization of animal waste for resource conservation and environmental protection is discussed, such as potential materials for green biochemicals. Resource recovery can, therefore, forestall the shortage of natural resources and, at the same time, can greatly reduce waste-disposal problems and energy crises. Many alternatives to waste disposal, either currently available or under study, focus on the recovery of material or energy. In a world of diminishing resources and increasing needs, each opportunity for the recycling of animal waste materials has been examined. This book significantly contributes toward climate change mitigation through better environmental solutions. A better understanding of animal waste recycling to mitigate climate changes has been portrayed in order to generate discussions among researchers and administrators. Environmental implications of animal waste are of prime importance in climate change scenario. Such wastes also harbor zoonotic pathogens that are transported in the environment. Finally, it has been tried out to collect ideas and experience in multiple aspects of animal waste management for climate change mitigation and bioenergy harvest.