Download Free Sustainable Energy Planning In Smart Grids Book in PDF and EPUB Free Download. You can read online Sustainable Energy Planning In Smart Grids and write the review.

Understanding the recent developments in renewable energy is crucial for a range of fields in today’s society. As environmental awareness and the need for a more sustainable future continues to grow, the uses of renewable energy, particularly in areas such as smart grid, must be considered and studied thoroughly to be implemented successfully and move society toward a more sustainable future. Optimal Planning of Smart Grid With Renewable Energy Resources offers a detailed guide to the new problems and opportunities for sustainable growth in engineering by focusing on modeling diverse problems occurring in science and engineering as well as novel effective theoretical methods and robust optimization theories, which can be used to analyze and solve multiple types of problems. Covering topics such as electric drives and energy systems, this publication is ideal for researchers, academicians, industry professionals, engineers, scholars, instructors, and students.
This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book.
The smart grid initiative, integrating advanced sensing technologies, intelligent control methods, and bi-directional communications into the contemporary electricity grid, offers excellent opportunities for energy efficiency improvements and better integration of distributed generation, coexisting with centralized generation units within an active network. A large share of the installed capacity for recent renewable energy sources already comprises insular electricity grids, since the latter are preferable due to their high potential for renewables. However, the increasing share of renewables in the power generation mix of insular power systems presents a significant challenge to efficient management of the insular distribution networks, mainly due to the variability and uncertainty of renewable generation. More than other electricity grids, insular electricity grids require the incorporation of sustainable resources and the maximization of the integration of local resources, as well as specific solutions to cope with the inherent characteristics of renewable generation. Insular power systems need a new generation of methodologies and tools to face the new paradigm of large-scale renewable integration. Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids discusses the modeling, simulation, and optimization of insular power systems to address the effects of large-scale integration of renewables and demand-side management. This practical book: Describes insular power systems, renewable energies, uncertainty, variability, reserves, and demand response Examines state-of-the-art forecasting techniques, power flow calculations, and scheduling models Covers probabilistic and stochastic approaches, scenario generation, and short-term operation Includes comprehensive testing and validation of the mathematical models using real-world data Explores electric price signals, competitive operation of distribution networks, and network expansion planning Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids provides a valuable resource for the design of efficient methodologies, tools, and solutions for the development of a truly sustainable and smart grid.
Sustainable Energy Planning in Smart Grids curates a diverse selection of innovative technological applications for problem-solving towards a sustainable smart grid. Through these examples, the reader will discover the flexibility and analytical skills required for the race towards reliable, resilient, renewable energy. This book's combination of real-world case studies allows students and researchers to understand the complex, interdisciplinary systems that impact potential solutions. Detailed analysis highlights the positives and drawbacks of a variety of options, modeling considerations, and criteria for success. Trials and testing include electric vehicle charging, public lighting, energy mapping, heating solutions, and a proposal for 100% renewable cities. With contributions from a global range of experts, this book builds the complex picture of integrated, systemic modern energy planning. - Collects case studies from experts around the world - Presents readers with insights into current technological applications and innovations for building a sustainable grid and energy system - Provides well-rounded, complex context to these interdisciplinary challenges
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids
Information and communication technologies play an essential role in the effectiveness and efficiency of smart city processes. Recognizing the role of process analysis in energy usage and how it can be enhanced is essential to improving city sustainability. Smart Grid Analytics for Sustainability and Urbanization provides emerging research on the development of information technology and communication systems in smart cities and smart grids. While highlighting topics such as process mining, innovation management, and sustainability optimization, this publication explores technology development and the mobilization of different environments in smart cities. This book is an important resource for graduate students, researchers, academics, engineers, and government officials seeking current research on how process analysis in energy usage is manifested and how it can be enhanced.
This book constitutes the refereed post-conference proceedings of the First EAI International Conference on Sustainable Energy for Smart Cities, SESC 2029, held as part of the Smart City 360° Summit event in Braga, Portugal, in December 2019. The 23 revised full papers were carefully reviewed and selected from 38 submissions. They contribute to answer complex societal, technological, and economic problems of emergent smart cities. The papers are organized thematically in tracks, starting with mobile systems, cloud resource management and scheduling, machine learning, telecommunication systems, and network management. The papers are grouped in topical sections on electric mobility; power electronics; intelligent, transportation systems; demand response; energy; smart homes; Internet of Things; monitoring; network communications; power quality; power electronics.
Social Impacts of Smart Grids: The Future of Smart Grids and Energy Market Design explores the significant, unexplored societal consequences of our meteoric evolution towards intelligent, responsive and sustainable power generation and distribution systems-the so-called 'smart grid'. These consequences include new patterns of consumption behavior, systems planning under increasing uncertainty, and the ever- growing complexities involved. The work covers the historical impact of the transformation, examines the changing role of production and consumption behavior, articulates the principles and options for socially responsible smart grid power market design, and explores social acceptance of the smart grid. Where relevant, it examines adjacent literatures from P2P electricity markets, electric vehicles, smart homes and smart cities, and related 'internet of energy' developments. Finally, it provides insights into mitigating the likely social consequences of our integrated low-carbon energy future.
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.
The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.