Download Free Sustainable Catalytic Processes Book in PDF and EPUB Free Download. You can read online Sustainable Catalytic Processes and write the review.

Industrial Catalytic Processes for Fine and Specialty Chemicals provides a comprehensive methodology and state-of-the art toolbox for industrial catalysis. The book begins by introducing the reader to the interesting, challenging, and important field of catalysis and catalytic processes. The fundamentals of catalysis and catalytic processes are fully covered before delving into the important industrial applications of catalysis and catalytic processes, with an emphasis on green and sustainable technologies. Several case studies illustrate new and sustainable ways of designing catalysts and catalytic processes. The intended audience of the book includes researchers in academia and industry, as well as chemical engineers, process development chemists, and technologists working in chemical industries and industrial research laboratories. - Discusses the fundamentals of catalytic processes, catalyst preparation and characterization, and reaction engineering - Outlines the homogeneous catalytic processes as they apply to specialty chemicals - Introduces industrial catalysis and catalytic processes for fine chemicals - Includes a number of case studies to demonstrate the various processes and methods for designing green catalysts
The development of catalysts is the most sophisticated art in chemical sciences. It can be read like a story book when the critical scientific contents are presented in a chronological manner with short and simple sentences. This book will meets these criteria. To address the sustainability issues of existing chemical manufacturing processes or producing new chemicals, researchers are developing alternate catalysts to eliminate toxic chemicals use and by-products formation. Sustainable Catalytic Processes presents critical discussions of the progress of such catalytic development. This book of contemporary research results in sustainable catalysis area will benefit scientists in both industries and academia, and students to learn recent catalysts/process development. Reports the most recent developments in catalysis with a focus on environmentally friendly commercial processes, such as waste water treatment, alternate energy, etc Bridges the theory, necessary for the development of environmentally friendly processes, and their implementation through pilot plant and large scale Contains mainly laboratory scale data and encourages industrial scientists to test these processes on a pilot scale Includes work examples featuring the development of the new catalysts/processes using bio-renewable feedstock satisfactorily addressing environmental concerns Includes one chapter demonstrating real industrial examples motivating the industrial and academic researchers to pursue similar research
The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of: - Catalytic pyrolysis of lignocellulosic biomass - Hybrid biogasoline by co-processing in FCC units - Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process) - Steam reforming of bio-oils to hydrogen With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students. - Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes - Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process - Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature
Catalysis, Green Chemistry and Sustainable Energy: New Technologies for Novel Business Opportunities offers new possibilities for businesses who want to address the current global transition period to adopt low carbon and sustainable energy production. This comprehensive source provides an integrated view of new possibilities within catalysis and green chemistry in an economic context, showing how these potential new technologies may become useful to business. Fundamentals and specific examples are included to guide the transformation of idea to innovation and business. Offering an overview of the new possibilities for creating business in catalysis, energy and green chemistry, this book is a beneficial tool for students, researchers and academics in chemical and biochemical engineering. - Discusses new developments in catalysis, energy and green chemistry from the perspective of converting ideas to innovation and business - Presents case histories, preparation of business plans, patent protection and IP rights, creation of start-ups, research funds and successful written proposals - Offers an interdisciplinary approach combining science and business
Opens the door to the sustainable production of pharmaceuticals and fine chemicals Driven by both public demand and government regulations, pharmaceutical and fine chemical manufacturers are increasingly seeking to replace stoichiometric reagents used in synthetic transformations with catalytic routes in order to develop greener, safer, and more cost-effective chemical processes. This book supports the discovery, development, and implementation of new catalytic methodologies on a process scale, opening the door to the sustainable production of pharmaceuticals and fine chemicals. Pairing contributions from leading academic and industrial researchers, Sustainable Catalysis focuses on key areas that are particularly important for the fine chemical and pharmaceutical industries, including chemo-, bio-, and organo-catalytic approaches to C H, C N, and C C bond-forming reactions. Chapters include academic overviews of current innovations and industrial case studies at the process scale, providing new insights into green catalytic methodologies from proof-of-concept to their applications in the synthesis of target organic molecules. Sustainable Catalysis provides the foundation needed to develop sustainable green synthetic procedures, with coverage of such emerging topics as: Catalytic reduction of amides avoiding LiAlH4 or B2H6 Synthesis of chiral amines using transaminases Industrial applications of boric acid and boronic acid catalyzed direct amidation reactions C H activation of heteroaromatics Organocatalysis for asymmetric synthesis Offering a balanced perspective on current limitations, challenges, and solutions, Sustainable Catalysis is recommended for synthetic organic chemists seeking to develop new methodologies and for industrial chemists dedicated to large-scale process development.
Catalysis for Sustainability: Goals, Challenges, and Impacts explores the intersection between catalytic science and sustainable technologies as a means to addressing current economic, social, and environmental problems. These problems include harnessing alternative energy sources, pollution prevention and remediation, and the manufacturing of comm
Focussing on catalysis without metals or other endangered elements, this book is an important reference for researchers working in catalysis and green chemistry.
Did you know that 95% of chemicals in industry are synthesized using catalysts? Sustainable Green Catalytic Processes offer concise descriptions of the application of catalysts in orchestrating eco-friendly transformation. These catalysts have enhanced selectivity for desired products while minimizing the creation of unwanted products. The book aims to present a collection of chapters related to green synthesis and methodologies and their applications in catalysis. These approaches have garnered attention from scientists in developing sustainable catalyst protocols that are environmentally greener and eco-friendly. This book aims to present a collection of chapters related to green synthesis and methodologies to motivate biochemists and engineers to provide a more sustainable environmental process. The first chapter focuses on the creation of ecologically friendly chemical processes. Another chapter frames the recent advances in heterogeneous photocatalysis and its applications. The book gives insights into the mechanisms underlying the total synthesis and functionalization of natural products through light-driven reactions. It reflects the new challenges as the chemical industry transitions to environmentally friendly and sustainable chemistry.
Highlighting sustainable catalytic processes in synthetic organic chemistry and industry, this useful guide places special emphasis on catalytic reactions carried out at room temperature. It describes the fundamentals, summarizes key advances, and covers applications in industrial processes in the field of energy generation from renewables, food science, and pollution control. Throughout, the latest research from various disciplines is combined, such as homogeneous and heterogeneous catalysis, biocatalysis, and photocatalysis. The book concludes with a chapter on future trends and energy challenges for the latter half of the 21st century. With its multidisciplinary approach this is an essential reference for academic and industrial researchers in catalysis science aiming to design more sustainable and energy-efficient processes.
This book explores the most effective or promising catalytic processes for the conversion of biobased components into high added value products, as platform chemicals and intermediates.