Download Free Sustainability In The Design Synthesis And Analysis Of Chemical Engineering Processes Book in PDF and EPUB Free Download. You can read online Sustainability In The Design Synthesis And Analysis Of Chemical Engineering Processes and write the review.

Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes is an edited collection of contributions from leaders in their field. It takes a holistic view of sustainability in chemical and process engineering design, and incorporates economic analysis and human dimensions. Ruiz-Mercado and Cabezas have brought to this book their experience of researching sustainable process design and life cycle sustainability evaluation to assist with development in government, industry and academia. This book takes a practical, step-by-step approach to designing sustainable plants and processes by starting from chemical engineering fundamentals. This method enables readers to achieve new process design approaches with high influence and less complexity. It will also help to incorporate sustainability at the early stages of project life, and build up multiple systems level perspectives. Ruiz-Mercado and Cabezas' book is the only book on the market that looks at process sustainability from a chemical engineering fundamentals perspective. - Improve plants, processes and products with sustainability in mind; from conceptual design to life cycle assessment - Avoid retro fitting costs by planning for sustainability concerns at the start of the design process - Link sustainability to the chemical engineering fundamentals
Towards Sustainable Chemical Processes describes a comprehensive framework for sustainability assessment, design and the processes optimization of chemical engineering. Beginning with the analysis and assessment in the early stage of chemical products' initiating, this book focuses on the combination of science sustainability and process system engineering, involving mathematical models, industrial ecology, circular economy, energy planning, process integration and sustainability engineering.All chapters throughout answered two fundamental questions in depth: (1) what tools and models are available to be used to assess and design sustainable chemical processes, (2) what the core theories and concepts are to get into the sustainable chemical process fields. Therefore, Towards Sustainable Chemical Processes is an indispensable guide for chemical engineers, researchers, students, practitioners and consultants in sustainability related area. - Provides innovative, novel and comprehensive methods and models for sustainability assessment, design and optimization, and synthesis and integration of chemical engineering processes - Combines sustainability science with process system engineering - Integrates mathematical models, industrial ecology, circular economy, energy planning, process integration and sustainability engineering - Includes new case studies related to renewable energy, resource management, process synthesis and process integration
The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.
This comprehensive work shows how to design and develop innovative, optimal and sustainable chemical processes by applying the principles of process systems engineering, leading to integrated sustainable processes with 'green' attributes. Generic systematic methods are employed, supported by intensive use of computer simulation as a powerful tool for mastering the complexity of physical models. New to the second edition are chapters on product design and batch processes with applications in specialty chemicals, process intensification methods for designing compact equipment with high energetic efficiency, plantwide control for managing the key factors affecting the plant dynamics and operation, health, safety and environment issues, as well as sustainability analysis for achieving high environmental performance. All chapters are completely rewritten or have been revised. This new edition is suitable as teaching material for Chemical Process and Product Design courses for graduate MSc students, being compatible with academic requirements world-wide. The inclusion of the newest design methods will be of great value to professional chemical engineers. - Systematic approach to developing innovative and sustainable chemical processes - Presents generic principles of process simulation for analysis, creation and assessment - Emphasis on sustainable development for the future of process industries
Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement, Second Edition, is an important textbook that provides authoritative, comprehensive, and easy-to-follow coverage of the fundamental concepts and practical techniques on the use of process integration to maximize the efficiency and sustainability of industrial processes. The book is ideal for adoption in process design and sustainability courses. It is also a valuable guidebook to process, chemical, and environmental engineers who need to improve the design, operation, performance, and sustainability of industrial plants. The book covers pressing and high growth topics, including benchmarking process performance, identifying root causes of problems and opportunities for improvement, designing integrated solutions, enhancing profitability, conserving natural resources, and preventing pollution. Written by one of the world's foremost authorities on integrated process design and sustainability, the new edition contains new chapters and updated materials on various aspects of process integration and sustainable design. The new edition is also packed with numerous new examples and industrial applications. - Allows the reader to methodically develop rigorous targets that benchmark the performance of industrial processes then develop cost-effective implementations - Contains state-of-the-art process integration and improvement approaches and techniques including graphical, algebraic, and mathematical methods - Covers topics and applications that include profitability enhancement, mass and energy conservation, synthesis of innovative processes, retrofitting of existing systems, design and assessment of water, energy, and water-energy-nexus systems, and reconciliation of various sustainability objectives
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex
Industrial Chemical Process Analysis and Design uses chemical engineering principles to explain the transformation of basic raw materials into major chemical products. The book discusses traditional processes to create products like nitric acid, sulphuric acid, ammonia, and methanol, as well as more novel products like bioethanol and biodiesel. Historical perspectives show how current chemical processes have developed over years or even decades to improve their yields, from the discovery of the chemical reaction or physico-chemical principle to the industrial process needed to yield commercial quantities. Starting with an introduction to process design, optimization, and safety, Martin then provides stand-alone chapters—in a case study fashion—for commercially important chemical production processes. Computational software tools like MATLAB®, Excel, and Chemcad are used throughout to aid process analysis. - Integrates principles of chemical engineering, unit operations, and chemical reactor engineering to understand process synthesis and analysis - Combines traditional computation and modern software tools to compare different solutions for the same problem - Includes historical perspectives and traces the improving efficiencies of commercially important chemical production processes - Features worked examples and end-of-chapter problems with solutions to show the application of concepts discussed in the text
Urbanization, industrialization, and unethical agricultural practices have considerably negative effects on the environment, flora, fauna, and the health and safety of humanity. Over the last decade, green chemistry research has focused on discovering and utilizing safer, more environmentally friendly processes to synthesize products like organic compounds, inorganic compounds, medicines, proteins, enzymes, and food supplements. These green processes exist in other interdisciplinary fields of science and technology, like chemistry, physics, biology, and biotechnology, Still the majority of processes in these fields use and generate toxic raw materials, resulting in techniques and byproducts which damage the environment. Green chemistry principles, alternatively, consider preventing waste generation altogether, the atom economy, using less toxic raw materials and solvents, and opting for reducing environmentally damaging byproducts through energy efficiency. Green chemistry is, therefore, the most important field relating to the sustainable development of resources without harmfully impacting the environment. This book provides in-depth research on the use of green chemistry principles for a number of applications.
As the range of feedstocks, process technologies and products expand, biorefineries will become increasingly complex manufacturing systems. Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis presents process modelling and integration, and whole system life cycle analysis tools for the synthesis, design, operation and sustainable development of biorefinery and chemical processes. Topics covered include: Introduction: An introduction to the concept and development of biorefineries. Tools: Included here are the methods for detailed economic and environmental impact analyses; combined economic value and environmental impact analysis; life cycle assessment (LCA); multi-criteria analysis; heat integration and utility system design; mathematical programming based optimization and genetic algorithms. Process synthesis and design: Focuses on modern unit operations and innovative process flowsheets. Discusses thermochemical and biochemical processing of biomass, production of chemicals and polymers from biomass, and processes for carbon dioxide capture. Biorefinery systems: Presents biorefinery process synthesis using whole system analysis. Discusses bio-oil and algae biorefineries, integrated fuel cells and renewables, and heterogeneous catalytic reactors. Companion website: Four case studies, additional exercises and examples are available online, together with three supplementary chapters which address waste and emission minimization, energy storage and control systems, and the optimization and reuse of water. This textbook is designed to bridge a gap between engineering design and sustainability assessment, for advanced students and practicing process designers and engineers.