Download Free Surveys Of Some Recent Results In Operator Theory Book in PDF and EPUB Free Download. You can read online Surveys Of Some Recent Results In Operator Theory and write the review.

This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
Functional Analysis: Surveys and Recent Results
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and probability theory. In the 1960's, Rota was motivated by problems in fluctuation theory to study some operator identities of Glen Baxter (see [7]). Together with other problems in probability theory, this led Rota to study combinatorics. His series of papers, "On the foundations of combi natorial theory", led to a fundamental re-evaluation of the subject. Later, in the 1990's, Rota returned to some of the problems in analysis and probability theory which motivated his work in combinatorics. This was his intention all along, and his early death robbed mathematics of his unique perspective on linkages between the discrete and the continuous. Glimpses of his new research programs can be found in [2,3,6,9,10].
The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.
Appliies variational methods and critical point theory on infinite dimenstional manifolds to some problems in Lorentzian geometry which have a variational nature, such as existence and multiplicity results on geodesics and relations between such geodesics and the topology of the manifold.
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
This is the third of three volumes containing the proceedings of the International Colloquium 'Free Boundary problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main part of this volume studies the flow of fluids, an area which has led to many of the classical free boundary problems. The first two sections contain the papers on various problems in fluid mechanics. The types of problems vary fromthe collision of two jets to the growth of a sand wave. In the next two sections porous flow is considered. This has important practical applications in fields such as petroleum engineering and groundwater pollution. Some new and interesting free boundary problems in geology and engineering are treated in the final section.
In at least five countries in Latin America, high level research in the field in taking place. To stimulate this development both at home and abroad, Chilean mathematicians have been promoting international meetings like the III International School of Dynamical Systems, which took place at the Universidad de Santiago de Chile-Santiago in 1990. A number of distinguished mathematicians were present at the meeting, side by side with younger people interested in the subject. Several of the participants submitted original contributions to these proceedings of the school. The topics of the papers are central to dynamics: ergodic theory, real and complex foliations, fractal dimensions, polynomial vector fields, hyperbolicity, and expansive maps. Notes on the ergodic theory of plane billiards are also included. This book will be of particular interest to researchers and graduate students working in mathematics, particularly in ordinary differential equations, bifurcation theory, and dynamical systems. Also those working in mathematical physics and physics.