Download Free Surface Tension And The Spreading Of Liquids Book in PDF and EPUB Free Download. You can read online Surface Tension And The Spreading Of Liquids and write the review.

First published in 1949, this book assesses the phenomena of surface tension and spreading for various liquids.
Wetting and Spreading Dynamics explains wetting phenomena when a liquid partially or completely wets solid or immiscible liquid surfaces. Written for both newcomers and experienced researchers in the field, the book uses principles and terminology from colloid science, fluid mechanics, and thermodynamics to solve equilibrium and dynamic prob
Wetting and Spreading Dynamics explains how surface forces acting at the three-phase contact line determine equilibrium, hysteresis contact angles, and other equilibrium and kinetics features of liquids when in contact with solids or with other immiscible liquids. It examines the interaction of surface forces, capillary forces, and properties of the transition zone between the bulk liquid and solid substrate. Significantly revised and updated, the Second Edition features new chapters that cover spreading of non-Newtonian liquids over porous substrates, hysteresis of contact angles on smooth homogeneous substrates, equilibrium and hysteresis contact angles on deformable substrates, and kinetics of simultaneous spreading and evaporation. Drawing together theory and experimental data while presenting over 150 figures to illustrate the concepts, Wetting and Spreading Dynamics, Second Edition is a valuable resource written for both newcomers and experienced researchers.
The study of capillarity is in the midst of a veritable explosion. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles designed for the undergraduate student and for readers interested in the physics underlying these phenomena.
Adhesives have been used for thousands of years, but until 100 years ago, the vast majority was from natural products such as bones, skins, fish, milk, and plants. Since about 1900, adhesives based on synthetic polymers have been introduced, and today, there are many industrial uses of adhesives and sealants. It is difficult to imagine a product—in the home, in industry, in transportation, or anywhere else for that matter—that does not use adhesives or sealants in some manner. The Handbook of Adhesion Technology is intended to be the definitive reference in the field of adhesion. Essential information is provided for all those concerned with the adhesion phenomenon. Adhesion is a phenomenon of interest in diverse scientific disciplines and of importance in a wide range of technologies. Therefore, this handbook includes the background science (physics, chemistry and materials science), engineering aspects of adhesion and industry specific applications. It is arranged in a user-friendly format with ten main sections: theory of adhesion, surface treatments, adhesive and sealant materials, testing of adhesive properties, joint design, durability, manufacture, quality control, applications and emerging areas. Each section contains about five chapters written by internationally renowned authors who are authorities in their fields. This book is intended to be a reference for people needing a quick, but authoritative, description of topics in the field of adhesion and the practical use of adhesives and sealants. Scientists and engineers of many different backgrounds who need to have an understanding of various aspects of adhesion technology will find it highly valuable. These will include those working in research or design, as well as others involved with marketing services. Graduate students in materials, processes and manufacturing will also want to consult it.
A plot of the initial spreading pressures (F sub ba) or initial spreading coefficients (S sub ba) against the surface tensions of a homologous series of organic liquids b can be used to determine the critical surface tension for spreading on a second substrate liquid phase a. Straight-line relations are found for various homologous series. The intercept of that line with the axis of abscissas (F sub ba = 0, or S sub ba = 0) defines a value of spreading for that series. This method is advantageous because it eliminates the need for measuring (or calculating) the contact angle of lens b floating on liquid a, it can be applied to any liquid substrate, and it is applicable even when spreading does not lie within the range of surface tensions of the members of the homologous series of liquids b. The value of spreading for the water/air interface was determined in this way using several homologous series of pure hydrocarbon liquids. The lowest value found was 21.7 dynes/cm at 20 deg C for the n-alkane series. Higher spreading values were obtained using olefins or aromatic hydrocarbons as the result of interaction between the unsaturated bond and the water surface. Since the results are analogous to those reported earlier for solid surfaces, it is concluded that the clean surface of water behaves as a low-energy surface with respect to low-polarity liquids. This result is to be expected if only dispersion forces are operative between each alkane liquid and water.