Download Free Surface Segregation Book in PDF and EPUB Free Download. You can read online Surface Segregation and write the review.

The purpose of this book is to discuss the phenomena associated with the segregation of one element in a multicomponent material. It describes the kinetics of segregation and contains a tabular summary of the pros and cons of the various models. The easy-to-read chapters outline in detail the macroscopic approach and provide an in-depth review of broken-bond models. This comprehensive informative resource also addresses important multicomponent systems. These systems include metals with non-metallic constituents, semiconductor-metal interfaces, steels and steel-related alloys, and real catalysts. Readers of this text will gain a good fundamental understanding and overview of surface, interfacial, and selvedge segregation. Those who have an interest in physics, vacuum science, material science, and chemical, mechanical, and electrical engineering will benefit from this imperative work.
The book presents the fundamental aspects of surface segregation theory. The material is presented in a self-contained manner and mathematical procedures are worked through in some cases in order to provide the reader with the necessary opportunity to realize the restrictions under which the expressions are valid.
This handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineering aspects of materials surfaces and interfaces remains scattered in so many different periodicals, therefore this handbook compilation is needed.The information presented in this multivolume reference draws on two decades of pioneering research on the surfaces and interfaces of materials to offer a complete perspective on the topic. These five volumes-Surface and Interface Phenomena; Surface Characterization and Properties; Nanostructures, Micelles, and Colloids; Thin Films and Layers; Biointerfaces and Applications-provide multidisciplinary review chapters and summarize the current status of the field covering important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniques with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source long due for the scientific community. The complete reference on the topic of surfaces and interfaces of materialsThe information presented in this multivolume reference draws on two decades of pioneering researchProvides multidisciplinary review chapters and summarizes the current status of the fieldCovers important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniquesContributions from internationally recognized experts from all over the world
Treatise on Materials Science and Technology, Volume 30: Auger Electron Spectroscopy examines Auger electron spectroscopy and its various uses, emphasizing both theoretical and experimental studies. This book discusses the historical development of auger electron spectroscopy, studies of surface segregation kinetics by auger electron spectroscopy, and local electronic structure information in auger electron spectroscopy. The metallurgical applications of auger electron spectroscopy and auger photoelectron coincidence spectroscopy are also elaborated. Other topics include the measurement of surface segregation kinetics by Auger electron spectroscopy, tempered martensite embrittlement, embrittlement of nonferrous alloys, and analysis of particle-matrix interfaces. The high-resolution scanning Auger electron spectroscopy, corrosion and stress corrosion cracking, and APECS instrumentation are likewise covered in this publication. This volume is suitable for researchers and electrical engineering students conducting work on Auger electron spectroscopy.
Pattern formation is a fascinating and challenging aspect in polymer science. This book describes a number of unconventional approaches developed to control the morphology of polymer surfaces and materials, from random or simple patterns to complex structures. Specialists provide an up-to-date and complete overview of each technique in their respective field.
Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.
Thermodynamics is an indispensable tool for developing a large and growing fraction of new polymers and polymer blends. These two volumes show the researcher how thermodynamics can be used to rank polymer pairs in order of immiscibility, including the search for suitable chemical structure of compatibilizers. Because of the great current commercial interest in this most dynamic sector of the polymer industry, there is high interest in studying their physical and mechanical properties, their structures, and the processes of their formation and manufacture. These Books are dedicated to Analysis of the Thermodynamics of Polymer Blends. Thermodynamic behavior of blends determines the compatibility of the components, their morphological features, rheological behavior, and microphase structures. As a result, the most important physical and mechanical characteristics of blends can be identified. The information in these two volumes will be useful to all those involved in polymer research, development, analysis and advanced process engineering.
A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.
IC-SEC 2002 serves as a forum for engineers and scientists who are involved in the use of high performance computers, advanced numerical strategies, computational methods and simulation in various scientific and engineering disciplines. The conference creates a platform for presenting and discussing the latest trends and findings about the state of the art in their particular field(s) of interest. IC-SEC also provides a forum for the interdisciplinary blending of computational efforts in various diversified areas of science, such as biology, chemistry, physics and materials science, as well as all branches of engineering. The proceedings cover a broad range of topics and an application area which involves modelling and simulation work using high performance computers.
The World Scientific Reference of Hybrid Materials is a set of 3 volumes, which covers the fascinating area of materials science at the intersection between purely polymeric, organic or inorganic materials. The rapidly developing research on hybrid materials is largely driven by the steadily increasing need of multifunctional materials in various branches of technology. However, much of the research is also driven by the curiosity of the researchers and the long lasting wish to merge the most beneficial properties of the various materials into one. The flexibility of polymers could, for example, be merged with the electronic conductivity of metals or the mechanical resistance of ceramics, which will be of great value for the industries.This reference covers the areas of synthesis of such hybrid materials, which take benefit from each of the consisting ingredients, and overviews some of the emerging applications based on the materials. Much of the current research is still in its infancy, but hybrid materials are already now considered to be the key enabler for important future developments, for example flexible electronics. With this perspective, this reference aims at giving the general public an overview over the topics of relevance in this field, but also attracting new researchers to this intriguing scientific area.