Download Free Surface Generation In Ultra Precision Diamond Turning Book in PDF and EPUB Free Download. You can read online Surface Generation In Ultra Precision Diamond Turning and write the review.

An Engineering Research Series title. One of the remarkable achievements of modern manufacturing techniques is the ability to achieve nano-metre surface finishes. Ultraprecision machining based on single-point diamond turning (SPDT) is a very important technique in the manufacture of high-precision components where surface finish is critical. Complex optical surfaces, for example, can be produced without the need for post-machining polishing. This book focuses on the aspect of modelling nano-surface generation in ultra precision SPDT. Potential industrial applications in the prediction of surface quality, the process optimization, and precision mould manufacturing are also studies. The essential differences between single-point diamond turning and conventional machining are described. The history and technology of single-point diamond turning are presented and single chapters emphasize the related metrology and cutting mechanics. Important aspects of surface generation are also discussed. Features of the text are the sound approach, systematic mathematical modelling, and computer-aided simulation of surface generation in the development of surfaces exhibiting nano-surface qualities. TOPICS COVERED INCLUDE: Fundamentals of ultra-precision diamond turning technology Cutting mechanics and analysis of microcutting force variation Mechanisms of surface generation Characterization and modelling of nano-surface generation Computer-aided simulation of nano-surface generation Diamond turning of aspheric optics. Based upon the extensive experience of the authors Surface Generation in Ultra-precision Diamond Turning: Modelling and Practices will be of interest to engineers, scientists, and postgraduate students.
This book presents an in-depth study and elucidation on the mechanisms of the micro-cutting process, with particular emphasis and a novel viewpoint on materials characterization and its influences on ultra-precision machining. Ultra-precision single point diamond turning is a key technology in the manufacture of mechanical, optical and opto-electronics components with a surface roughness of a few nanometers and form accuracy in the sub-micrometric range. In the context of subtractive manufacturing, ultra-precision diamond turning is based on the pillars of materials science, machine tools, modeling and simulation technologies, etc., making the study of such machining processes intrinsically interdisciplinary. However, in contrast to the substantial advances that have been achieved in machine design, laser metrology and control systems, relatively little research has been conducted on the material behavior and its effects on surface finish, such as the material anisotropy of crystalline materials. The feature of the significantly reduced depth of cut on the order of a few micrometers or less, which is much smaller than the average grain size of work-piece materials, unavoidably means that conventional metal cutting theories can only be of limited value in the investigation of the mechanisms at work in micro-cutting processes in ultra-precision diamond turning.
The goal of this book is to familiarize professionals, researchers, and students with the basics of the Diamond Turn Machining Technology and the various issues involved. The book provides a comprehensive knowledge about various aspects of the technology including the background, components of the machine, mechanism of material removal, application areas, relevant metrology, and advances taking place in this domain. Solved and unsolved examples are provided in each of the areas which will help the readers to practice and get familiarized with that particular area of the Diamond Turn Machining process.
This handbook covers the fly cutting technique, an ultra-precision mechanical machining technology which is regarded as the fastest and most reliable low-cost machining method to generate high quality complex surfaces. The ultra-precision raster milling provides more flexibility and suitability for freeform and structural surfaces with a uniform quality with sub-micrometric form error and nanometric surface roughness. These surfaces are widely applied into optics, medicine, biotechnology, electronics, and communications. The fundamental and latest advancing knowledge of fly-cutting technology is important for the future development and applications in ultra-precision mechanical machining technology. This book provides a good reference for fly-cutting technology in ultra-precision machining for undergraduate and postgraduate students, researchers, engineers, and postdoctoral fellow in advanced manufacturing area. It gives the audience an overview of the working principles, process mechanism, salient features, applications, and research directions of ultra-precision fly-cutting technology.
This thesis focuses on producing hybrid freeform surfaces using an advanced diamond-turning process, understanding the generation of surface accuracies (form errors) and how the choice of cutting strategies affects these, as well as simplifying the complications of generating cutting paths for such freeform surfaces. The breakthroughs behind this thesis are the development of novel, multiple-axis, diamond turning techniques to overcome the limitations of conventional diamond turning processes, an analytical model to optimize the generation of ultraprecise freeform surfaces, and an add-on tool path processor for CAD/CAM software solutions. It appeals to researchers and scholars with a strong machining background who are interested in the field of manufacturing ultraprecise freeform surfaces or in the field of optimizing ultraprecision machining processes.
Ultra-precision machining is a promising solution for achieving excellent machined surface quality and sophisticated micro/nano-structures that influence the applications of components and devices. Further, given the ultrathin layer of material removed, it is a highly coupled process between cutting tool and material. In this book, scientists in the fields of mechanical engineering and materials science from China, Ukraine, Japan, Singapore present their latest research findings regarding the simulation and experiment of material-oriented ultra-precision machining. Covering various machining methods (cutting, grinding, polishing, ion beam and laser machining) and materials (metal, semiconductor and hard-brittle ceramics), it mainly focuses on the evaluation of the fundamental mechanisms and their implementation in processing optimization for different materials. It is of significant theoretical and practical value for guiding the fabrication of ultra-smooth and functional surfaces using ultra-precision machining.
The goal of this book is to familiarize professionals, researchers, and students with the basics of the Diamond Turn Machining Technology and the various issues involved. The book provides a comprehensive knowledge about various aspects of the technology including the background, components of the machine, mechanism of material removal, application areas, relevant metrology, and advances taking place in this domain. Solved and unsolved examples are provided in each of the areas which will help the readers to practice and get familiarized with that particular area of the Diamond Turn Machining process.
Micro-Cutting: Fundamentals and Applications comprehensively covers the state of the art research and engineering practice in micro/nano cutting: an area which is becoming increasingly important, especially in modern micro-manufacturing, ultraprecision manufacturing and high value manufacturing. This book provides basic theory, design and analysis of micro-toolings and machines, modelling methods and techniques, and integrated approaches for micro-cutting. The fundamental characteristics, modelling, simulation and optimization of micro/nano cutting processes are emphasized with particular reference to the predictabilty, producibility, repeatability and productivity of manufacturing at micro and nano scales. The fundamentals of micro/nano cutting are applied to a variety of machining processes including diamond turning, micromilling, micro/nano grinding/polishing, ultraprecision machining, and the design and implementation of micro/nano cutting process chains and micromachining systems. Key features • Contains contributions from leading global experts • Covers the fundamental theory of micro-cutting • Presents applications in a variety of machining processes • Includes examples of how to implement and apply micro-cutting for precision and micro-manufacturing Micro-Cutting: Fundamentals and Applications is an ideal reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, as well as machine tool designers. It is also a suitable textbook for postgraduate students in the areas of micro-manufacturing, micro-engineering and advanced manufacturing methods.
Machining dynamics play an essential role in the performance of the machine tools and machining processes which directly affect the removal rate, workpiece surface quality and dimensional and form accuracy. Machining Dynamics: Fundamentals and Applications will be bought by advanced undergraduate and postgraduate students studying manufacturing engineering and machining technology in addition to manufacturing engineers, production supervisors, planning and application engineers, and designers.
This book contains the research report of the DFG Research Unit FOR 1845 (2014-2020) of the Universities of Bremen and Hannover. The thematic focus lies on speeding up ultra-precision machining technology by following a holistic approach to high-performance cutting. This includes ultra-precision milling at high spindle speeds (>10000 rpm), precision tool setting mechanisms for multi-cutting-edge diamond milling tools, magnetic levitation technology for high velocity feed axes, and dedicated control strategies for error identification and compensation at high speeds. Furthermore, automation and measurement aspects of the machine setup process especially for precision balancing of the spindle rotors are presented. Finally, it is demonstrated that how the developed technologies may be integrated into a common machine tool setup. The target audience primarily comprises research experts and practitioners in production engineering, but the book may also be of interest to graduate students alike.