Download Free Surface Engineering Of Polymer Membranes Book in PDF and EPUB Free Download. You can read online Surface Engineering Of Polymer Membranes and write the review.

Surface Engineering of Polymer Membranes covers the processes that modify membrane surfaces to improve their in-service performance, meaning, to confer surface properties which are different from the bulk properties. Purposes may be to minimize fouling, modulate hydrophilicity/ hydrophobicity, enhance biocompatibility, create diffusion barriers, provide functionalities, mimic biomembranes, fabricate nanostructures, etc. First, the basics of surface engineering of polymer membranes are covered. Then topics such as surface modification by graft polymerization and macromolecule immobilization, biomimetic surfaces, enzyme immobilization, molecular recognition, and nanostructured surfaces are discussed. This book provides a unique synthesis of the knowledge of the role of surface chemistry and physics in membrane science. Dr. Zhikang Xu of the Institute of Polymer Science of Zhejiang University has eight Chinese patents and in 2006 was honored as a Distinguished Young Scholar by the National Natural Science Foundation of China (NNSFC).
Surface Engineering of Polymer Membranes covers the processes that modify membrane surfaces to improve their in-service performance, meaning, to confer surface properties which are different from the bulk properties. Purposes may be to minimize fouling, modulate hydrophilicity/ hydrophobicity, enhance biocompatibility, create diffusion barriers, provide functionalities, mimic biomembranes, fabricate nanostructures, etc. First, the basics of surface engineering of polymer membranes are covered. Then topics such as surface modification by graft polymerization and macromolecule immobilization, biomimetic surfaces, enzyme immobilization, molecular recognition, and nanostructured surfaces are discussed. This book provides a unique synthesis of the knowledge of the role of surface chemistry and physics in membrane science. Dr. Zhikang Xu of the Institute of Polymer Science of Zhejiang University has eight Chinese patents and in 2006 was honored as a Distinguished Young Scholar by the National Natural Science Foundation of China (NNSFC).
Researchers in polymeric membranes as well as R&D professionals will find this work an essential addition to the literature. It concentrates on the method recently developed to study the surfaces of synthetic polymeric membranes using an Atomic Force Microscope (AFM), which is fast becoming a very important tool. Each chapter includes information on basic principles, commercial applications, an overview of current research and guidelines for future research.
Synthetic membranes have been frequently used for many fields, such as, the food and beverage, biopharmaceutical, and biofuel industries. In the beer industry, microfiltration frequently suffers from fouling due to the interaction between different species. It is shown that polyphenols can form cross-links with protein molecules, forming insoluble aggregates. However, by adding an optimal amount of polysaccharides these aggregates can be disrupted thus reducing fouling by the aggregates. Confocal laser scanning microscopy (CLSM) is a powerful technique to locate the foulants inside the wet membrane in order to understand more about the behavior of fouling in microfiltration. Membrane surface modification is used to impart desirable membrane surface properties. Here membrane surface modification is used to develop membrane adsorbers for protein purification. Hydrophobic interaction membrane chromatography (HIMC) has gained interest due to its excellent performance in purification humanized monoclonal antibodies. HIMC affords all the advantages of membrane adsorbers, which is dynamic capacities that are independent of flow rate, higher throughput and easy to scale up. Unique inverse colloidal crystal (ICC) membranes were developed with highly periodic structures, high porosity, and fully interconnected pores. ICC membranes offer a very high binding capacity for IgG4. On the other hand, salt responsive membranes were developed by grafting responsive ligand, poly vinylcaprolactam (PVCL), from the surface of the membrane by atom transfer radical polymerization (ATRP). The nanostructure can vary its conformation and hydrophobicity when the temperature changes. After modification, membrane is able to provide a very high recovery and yield. Membrane modification is also well applied for biofuel industry. Duel nanostructures, poly styrene sulfonic acid (PSSA) and poly ionic liquid (PIL) were grafted separately and neighborly from the surface of ceramic membrane substrate by control ATRP and UV initiated radical polymerization. Modified membrane substrates were challenged with cellulose and corn-stovers biomass hydrolysis in pure ionic liquid (IL) and mixture of IL and co-solvent. High yield in total reducing sugar (TRS), 95% and 60% for cellulose and corn-stovers biomass respectively, indicates strong activity of polymeric solid acid catalysts.
Membrane Modification: Technology and Applications is written for engineers, scientists, graduate students, and researchers in the field of membrane science and technology, materials science, applied physics, chemistry, and environmental science. The book presents the complete range of membrane modification techniques used to increase efficiency of
Biomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties. This book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered. The theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials are presented. The book also includes information on the most used conventional and advanced surface engineering methods. The book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.
This book is intended to serve as a "one-stop" reference resource for important research accomplishments in the area of nanostructured polymer membranes and their processing and characterizations. It will be a very valuable reference source for university and college faculties, professionals, post-doctoral research fellows, senior graduate students, and researchers from R&D laboratories working in the area of polymer nanobased membranes. The various chapters are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe and comprise an up-to-date record on the major findings and observations in the field.
Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization. With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students. Evaluates water remediation using pressure driven and potential driven membrane processes Reviews emerging polymer systems for membranes preparation Offers a comprehensive analysis in the development of polymer-based membranes and their applications in water remediation Analyzes membrane performance parameters to evaluate separation efficiency for various water pollutants Covers concept-to-commercialization aspects of polymer-based membranes in terms of water purification, pollutant removal, stability and scalability
A summary of the recent achievements in surface-functionalised cells including fabrication, characterisation, applications and nanotoxicity.