Download Free Surface Coating And Modification Of Metallic Biomaterials Book in PDF and EPUB Free Download. You can read online Surface Coating And Modification Of Metallic Biomaterials and write the review.

Despite advances in alternative materials, metals are still the biomaterial of choice for a number of clinical applications such as dental, orthopedic and cardiac implants. However, there are a number of intrinsic problems associated with implanting metal in the biological environment, such as wear, corrosion, biocompatibility and toxicity, which must be addressed. Modern technology has enabled scientists to modify metal surfaces or apply special coatings to metals to improve their performance safety. Surface Coating and Modification of Metallic Biomaterials will discuss the most important modification techniques and coatings for metals, first covering the fundamentals of metals as a biomaterial and then exploring surface modification techniques and coatings. - An expansive overview of surface modification techniques for biomedical use - In-depth exploration of issues arising from metal biomaterial use - Includes examples of applications in a clinical setting
Metallic Biomaterials Processing and Medical Device Manufacturing details the principles and practices of the technologies used in biomaterials processing and medical device manufacturing. The book reviews the main categories of metallic biomaterials and the essential considerations in design and manufacturing of medical devices. It bridges the gap between the designing of biomaterials and manufacturing of medical devices including requirements and standards. Main themes of the book include, manufacturing, coatings and surface modifications of medical devices, metallic biomaterials and their mechanical behaviour, degradation, testing and characterization, and quality controls, standards and FDA regulations of medical devices. The leading experts in the filed discuss the requirements, challenges, recent progresses and future research directions in the processing of materials and manufacturing of medical devices. Metallic Biomaterials Processing and Medical Device Manufacturing is ideal for those working in the disciplines of materials science, manufacturing, biomedical engineering, and mechanical engineering. - Reviews key topics of biomaterials processing for medical device applications including metallic biomaterials and their mechanical behavior, degradation, testing and characterization - Bridges the gap between biomaterials design and medical device manufacturing - Discusses the quality controls, standards, and FDA requirements for biomaterials and medical devices
Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a valuable reference for both materials scientists, chemical and mechanical engineers working both in R&D and academia who want to learn more on how nanoparticles and nanomaterials are commercially applied. - Provides an in-depth look at the properties of nanoparticles and architecture nanostructures in terms of their applicability for industrial uses - Analyzes the most recent advances and industrial applications of different types of nanoparticles and architecture nanostructures, taking into account their unusual structures and compositions - Identifies novel nanometric particles and architectures that are of particular value for applications and the techniques required to use them effectively
Fundamental Biomaterials: Metals provides current information on the development of metals and their conversion from base materials to medical devices. Chapters analyze the properties of metals and discuss a range of biomedical applications, with a focus on orthopedics. While the book will be of great use to researchers and professionals in the development stages of design for more appropriate target materials, it will also help medical researchers understand, and more effectively communicate, the requirements for a specific application. With the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for students. It represents the second volume in a three volume set, each of which reviews the most important and commonly used classes of biomaterials, providing comprehensive information on materials properties, behavior, biocompatibility and applications. - Provides current information on metals and their conversion from base materials to medical devices - Includes analyses of types of metals, discussion of a range of biomedical applications, and essential information on corrosion, degradation and wear and lifetime prediction of metal biomaterials - Explores both theoretical and practical aspects of metals in biomaterials
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field
Corrosion and erosion processes often occur synergistically to cause serious damage to metal alloys. Laser surface modification techniques such as laser surface melting or alloying are being increasingly used to treat surfaces to prevent corrosion or repair corroded or damaged components. Laser surface modification of alloys for corrosion and erosion resistance reviews the wealth of recent research on these important techniques and their applications.After an introductory overview, part one reviews the use of laser surface melting and other techniques to improve the corrosion resistance of stainless and other steels as well as nickel-titanium and a range of other alloys. Part two covers the use of laser surface modification to prevent different types of erosion, including liquid impingement, slurry (solid particle) and electrical erosion as well as laser remanufacturing of damaged components.With its distinguished editor and international team of contributors, Laser surface modification of alloys for corrosion and erosion resistance is a standard reference for all those concerned with preventing corrosion and erosion damage in metallic components in sectors as diverse as energy production and electrical engineering. - Reviews recent research on the use of laser surface modification techniques, including the prevention of corrosion and repair of corroded or damaged components - Discusses the techniques for improving the corrosion resistance of steels, nickel-titanium and a range of alloys - Analyses the use of laser surface modification to prevent different types of erosion, including liquid impingement and laser remanufacturing of damaged components
Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.
This book provides a comprehensive overview of the latest advances in a wide range of biomaterials for the development of smart and advanced functional materials. It discusses the fundamentals of bio-interfacial interactions and the surface engineering of emerging biomaterials like metals and alloys, polymers, ceramics, and composites/nanocomposites. In turn, the book addresses the latest techniques and approaches to engineering material surfaces/interfaces in, e.g., implants, tissue engineering, drug delivery, antifouling, and dentistry. Lastly, it summarizes various challenges in the design and development of novel biomaterials. Given its scope, it offers a valuable source of information for students, academics, physicians and particularly researchers from diverse disciplines such as material science and engineering, polymer engineering, biotechnology, bioengineering, chemistry, chemical engineering, nanotechnology, and biomedical engineering for various commercial and scientific applications.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book primarily covers recent research, theories, and practices relevant to surface engineering and processing of materials. It focuses on the lesser-known technologies and advanced manufacturing methods which may not be standardized yet but are highly beneficial to material and manufacturing industrial engineers. The book includes current advances in the field of coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies which enhance the performance of materials in terms of corrosion, wear and fatigue. The book can be a valuable reference for beginners, researchers, and professionals interested in materials processing and allied fields.
This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.