Download Free Superplasticizers In Concrete Book in PDF and EPUB Free Download. You can read online Superplasticizers In Concrete and write the review.

Science and Technology of Concrete Admixtures presents admixtures from both a theoretical and practical point-of-view. The authors emphasize key concepts that can be used to better understand the working mechanisms of these products by presenting a concise overview on the fundamental behavior of Portland cement and hydraulic binders as well as their chemical admixtures, also discussing recent effects in concrete in terms of rheology, mechanics, durability, and sustainability, but never forgetting the fundamental role played by the water/binder ratio and proper curing in concrete technology. Part One presents basic knowledge on Portland cement and concrete, while Part Two deals with the chemical and physical background needed to better understand what admixtures are chemically, and through which mechanism they modify the properties of the fresh and hardened concrete. Subsequent sections present discussions on admixtures technology and two particular types of concrete, self-consolidating and ultra-high strength concretes, with final remarks on their future. - Combines the knowledge of two leading authors to present both the scientific and technology of admixtures - Explains what admixtures are from a chemical point-of-view and illustrates by which mechanisms they modify the properties of fresh and hardened concrete - Presents a fundamental, practical, and innovative reference book on the topic - Contains three detailed appendices that can be used to learn how to use admixtures more efficiently
This volume gathers the latest advances, innovations and applications presented by leading international researchers and engineers at the International Conference on Sustainable Production and Use of Cement and Concrete (ICSPCC 2019), held in Villa Clara, Cuba on June 23-30, 2019. It covers highly diverse topics, including sustainable production of low-carbon cements, novelties in the development of supplementary cementitious materials, new techniques for the microstructural characterization of construction materials, Portland-based and alkaline-activated cementitious systems, development of additives and additions in the sustainable production of concrete, sustainable production of high-performance concrete, durable concrete produced with recycled aggregates, development of mortars for historical patrimony restoration, environmental and economic assessment of the production and use of cement. The contributions, which were selected by means of a rigorous, international peer-review process, highlight numerous exciting ideas that will inspire novel research directions and foster multidisciplinary collaboration between different specialists.
Since the publication of the first edition ten years ago, significant developments have occurred in the use of admixtures in concrete. Eight new chapters and a full update of the preceding ten chapters bring this book up to date; reflecting the relative advances made in the science and technology of different groups of admixtures. The increased role and development of admixtures in concrete technology is evidenced by a number of conferences, publications, and novel admixtures available in the market place. These developments in the field caused the modification of many chapters in the first edition in order to reflect the advances. Although individual chapters refer to standards and specifications of admixtures, those only interested in the standards or techniques used in investigating admixtures will find the second chapter (Research Technologies, Standards, and Specifications) useful. Admixtures are not as inert as may be presumed. They may chemically interact with the constituents of concrete and affect the properties of the fresh and hardened concrete and its durability. The third chapter deals with these aspects. It was important to devote a chapter to recent attempts in developing new admixtures.
Chemical admixtures are used in concrete mixtures to produce particular engineering properties such as rapid hardening, water-proofing or resistance to cold. Chemical Admixtures for Concrete surveys recent developments in admixture technology, explaining the mechanisms by which admixtures produce their effects, the various types of admixtures avail
Sustainable Construction Materials: Recycled Aggregate focuses on the massive systematic need that is necessary to encourage the uptake of recycled and secondary materials (RSM) in the construction industry. This book is the fifth and the last of the series on sustainable construction materials and like the previous four, it is also different to the norm. Its uniqueness lies in using the newly developed, Analytical Systemisation Method, in building the data-matrix sourced from 1413 publications, contributed by 2213 authors from 965 institutions in 67 countries, from 1977 to 2018, on the subject of recycled aggregate as a construction material, and systematically analysing, evaluating and modelling this information for use of the material as an aggregate concrete and mortar, geotechnics and road pavement applications. Environmental issues, case studies and standards are also discussed. The work establishes what is already known and can be used to further progress the use of sustainable construction materials. It can also help to avoid repetitive research and save valuable resources. The book is structured in an incisive and easy to digest manner and is particularly suited for researchers, academics, design engineers, specifiers, contractors, and government bodies dealing with construction works. - Provides an exhaustive and comprehensively organized list of globally-based published literature spanning 5000 references - Offers an analysis, evaluation, repackaging and modeling of existing knowledge that encourages more responsible use of waste materials - Provides a wealth of knowledge for use in many sectors relating to the construction profession, including academia, research, practice and adoption of RSM
This book has been prepared with the aim of integrating information about the chemistry and application of concrete superplasticizers in a manner relevant to concrete engineers and technologists. The opening chapter introduces basic aspects of concrete science as background for what follows. Chapters 2-4 discuss the chemical synthesis of superplasticizers, methods used to characterize those chemicals, and techniques for evaluation of their effect in cementitious systems. Subsequent chapters cover: the influence of superplasticizers on hydration of cement materials; rheology of cementitious systems; issues related to the mode of action and compatibility of superplasticizers; the effect of superplasticizers on fresh concrete; mechanical properties and durability of concrete; innovative applications of superplasticizers in concrete; superplasticizer dispensing, specifications, and standards; patents related to superplasticizers; and current and future trends in the use of superplasticizers in concrete.
This volume collects the proceedings from the International Congress of Polymers in Concrete 2018 (ICPIC), held under the theme “Polymers for Resilient and Sustainable Concrete Infrastructure.” ICPIC 2018 provides an opportunity for researchers and specialists working in the fields of polymers to exchange ideas and follow the latest progress in the use of polymers in concrete infrastructure. It also showcases the use of polymers and polymer concrete in sustainable and resilient development, and provides a platform for local and overseas suppliers, developers, manufacturers and contractors using polymers, polymer concrete and polymer composites in concrete structures to develop new business opportunities and follow the latest developments in the field. The International Congress of Polymers in Concrete is an international forum that has taken place every three years for the last 40 years with the objective of following progress in the field of polymers and their use in concrete and construction. Following 15 successful congresses held in London (1975), Austin (1978), Koriyama (1981), Darmstadt (1984), Brighton (1987), Shanghai (1990), Moscow (1992), Oostende (1995), Bologna (1998), Honolulu (2001), Berlin (2004), Chuncheon (2007), Funchal (2010), Shanghai (2013) and Singapore (2015), the 16th ICPIC will take place in Washington, DC, from April 29 to May 1st, 2018.
Civil Engineering Materials explains why construction materials behave the way they do. It covers the construction materials content for undergraduate courses in civil engineering and related subjects and serves as a valuable reference for professionals working in the construction industry. The book concentrates on demonstrating methods to obtain, analyse and use information rather than focusing on presenting large amounts of data. Beginning with basic properties of materials, it moves on to more complex areas such as the theory of concrete durability and corrosion of steel. - Discusses the broad scope of traditional, emerging, and non-structural materials - Explains what material properties such as specific heat, thermal conductivity and electrical resistivity are and how they can be used to calculate the performance of construction materials. - Contains numerous worked examples with detailed solutions that provide precise references to the relevant equations in the text. - Includes a detailed section on how to write reports as well as a full section on how to use and interpret publications, giving students and early career professionals valuable practical guidance.
Estimating, modelling, controlling and monitoring the flow of concrete is a vital part of the construction process, as the properties of concrete before it has set can have a significant impact on performance. This book provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, the impact of mix design, and casting.Part one begins with two introductory chapters dealing with the rheology and rheometry of complex fluids, followed by chapters that examine specific measurement and testing techniques for concrete. The focus of part two is the impact of mix design on the rheological behaviour of concrete, looking at additives including superplasticizers and viscosity agents. Finally, chapters in part three cover topics related to casting, such as thixotropy and formwork pressure.With its distinguished editor and expert team of contributors, Understanding the rheology of concrete is an essential reference for researchers, materials specifiers, architects and designers in any section of the construction industry that makes use of concrete, and will also benefit graduate and undergraduate students of civil engineering, materials and construction. - Provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, casting and the impact of mix design - The estimating, modelling, controlling and monitoring of concrete flow is comprehensively discussed - Chapters examine specific measurement and testing techniques for concrete, the impact of mix design on the rheological behaviour of concrete, particle packaging and viscosity-enhancing admixtures