Download Free Superplasticity And Grain Boundaries In Ultrafine Grained Materials Book in PDF and EPUB Free Download. You can read online Superplasticity And Grain Boundaries In Ultrafine Grained Materials and write the review.

Proceedings of a symposium sponsored by the Shaping and Forming Committee of the Materials Processing and Manufacturing Division (MPMD) and the Mechanical Behavior Committee (Jt. SMD/ASM-MSCTS) of the Structural Materials Division (SMD) of TMS (The Minerals, Metals & Materials Society) and held during the 2002 TMS Annual Meeting in Seattle, Washington February 17-21,2002.
Superplasticity is a state in which solid crystalline materials, such as some fine-grained metals, are deformed well beyond their usual breaking point. The phenomenon is of importance in processes such as superplastic forming which allows the manufacture of complex, high-quality components in such areas as aerospace and biomedical engineering.Superplasticity and grain boundaries in ultrafine-grained materials discusses a number of problems associated with grain boundaries in metallic polycrystalline materials. The role of grain boundaries in processes such as grain boundary diffusion, relaxation and grain growth is investigated. The authors explore the formation and evolution of the microstructure, texture and ensembles of grain boundaries in materials produced by severe plastic deformation.Written by two leading experts in the field, Superplasticity and grain boundaries in ultrafine-grained materials significantly advances our understanding of this important phenomenon and will be an important reference work for metallurgists and those involved in superplastic forming processes. - Discusses significant problems associated with grain boundaries in polycrystals incorporating structural superplasticity and grain boundary sliding - Assesses the role of grain boundaries in processes such as grain boundary diffusion, relaxation and grain growth - Explores the formation and evolution of the microstructure, texture and ensembles of grain boundaries in materials produced by severe plastic deformation
Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Second Edition, provides cutting-edge modeling solutions surrounding the role of grain boundaries in processes such as grain boundary diffusion, relaxation and grain growth. In addition, the book's authors explore the formation and evolution of the microstructure, texture and ensembles of grain boundaries in materials produced by severe plastic deformation. This updated edition, written by leading experts in the field, has been revised to include new chapters on the basics of nanostructure processing, the influence of deformation mechanisms on grain refinement, processing techniques for ultrafine-grained and nanostructured materials, and much more. - Provides practical applications and methods for the proper implementation of models, allowing for more effective complex metal forming processes - Features new chapters on the microstructure, mechanical behavior and functional properties of HCP metals, processing ultrafine-grained and nanostructured materials, and more - Covers experimental assessment and computational modeling techniques for adiabatic heating and saturation of grain refinement during SPD of metals and alloys
The book deals with a number of problems associated with the description and experimental verification of the individual boundaries and ensembles of the grain boundaries in polycrystals. The role of these boundaries in processes such as grain boundary diffusion, relaxation and grain growth is investigated. It is attempted to construct a general model of superplasticity based on the experimentally determined relationships relating to the bands of co-operative grain boundary sliding. Special attention is given to the problems of formation and evolution of the microstructure, the texture and ensembles of the grain boundaries in materials produced by severe plastic deformation methods.
The book discusses a number of problems associated with grain boundaries in polycrystals and other topics of interest to metallurgists and researchers concerned with the problems of nanomaterials. and nanotechnology.
A materials engineering monograph in the Cambridge Solid State Science Series, first published in 1997.
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion
Selected, peer reviewed papers from the 12th International Conference on Superplasticity in Advanced Materials (ICSAM 2015), September 7-11, 2015, Tokyo, Japan
Aluminium (Al) is a metal of great importance because of its excellent corrosion resistance, high electrical and thermal conductivity, good reflectivity, and very good recycling characteristics. The properties of heat-treatable Al-alloys can be further enhanced by the inclusion of a reinforcing phase that increases the mechanical properties of the overall composite. This book is a comprehensive guide on the different types of aluminum alloys and the new advances that have been made in developing and manufacturing aluminum alloys and composites. This text provides a comprehensive overview of the processing, formability, and chemical composition of aluminum alloys and composites. Part One is focused on evaluating the types and properties of advanced aluminum alloys and composites, while Part Two explores characterization. The advantage of this book is that it provides a detailed review of major advances that have occurred in the development and application of aluminum alloys and composites while outlining a development strategy for these materials.