Download Free Superplastic Forming Book in PDF and EPUB Free Download. You can read online Superplastic Forming and write the review.

Ultra fine-grained metals can show exceptional ductility, known as superplasticity, during sheet forming. The higher ductility of superplastic metals makes it possible to form large and complex components in a single operation without joints or rivets. The result is less waste, lower weight and manufacturing costs, high precision and lack of residual stress associated with welding which makes components ideal for aerospace, automotive and other applications. Superplastic forming of advanced metallic materials summarises key recent research on this important process.Part one reviews types of superplastic metals, standards for superplastic forming, processes and equipment. Part two discusses ways of modelling superplastic forming processes whilst the final part of the book considers applications, including superplastic forming of titanium, aluminium and magnesium alloys.With its distinguished editor and international team of contributors, Superplastic forming of advanced metallic materials is a valuable reference for metallurgists and engineers in such sectors as aerospace and automotive engineering.Note: The Publishers wish to point out an error in the authorship of Chapter 3 which was originally listed as: G. Bernhart, Clément Ader Institute, France. The correct authorship is: G Bernhart, P. Lours, T. Cutard, V. Velay, Ecole des Mines Albi, France and F. Nazaret, Aurock, France. The Publishers apologise to the authors for this error. - Reviews types of superplastic metals and standards for superplastic forming - Discusses the modelling of superplastic forming, including mathematical and finite element modelling - Examines various applications, including superplastic forming of titanium, aluminiun and magnesium alloys
This book provides a comprehensive illustration to the superplastic forming/diffusion bonding (SPF/DB) technology developed over decades of research on titanium alloys, process modeling, and its application. SPF/DB technology plays key roles in building aviation components with complicated structures, with highly beneficial effects when well designed. With the ever-increasing demand on components with multiple layers, there is an urgent need for an updated assessment of traditional and modern SPF/DB processing methods. Success critically depends on making the most practical and effective choice of SPF/DB method for a given application. The book introduces titanium and titanium alloys, SPF/DB processing and its modeling, and applications for building typical single or multiple layer(s) structures. Particular attention is paid to illustrating the microstructure evolution during SPF/DB processes. The information for making technical decisions about optimal choice of measurement and evaluation methods is also given in the book. Each chapter follows a focused and pragmatic format. Fully illustrated throughout, the book presents the state of the art in SPF/DB technology in a manner that makes it useful for engineers to improve the established forming processes and quality of components. This book is an essential reading material for industrial practitioners, academic researchers and postgraduates.
Superplasticity is the ability of polycrystalline materials under certain conditions to exhibit extreme tensile elongation in a nearly homogeneous/isotropic manner. Historically, this phenomenon was discovered and systematically studied by metallurgists and physicists. They, along with practising engineers, used materials in the superplastic state for materials forming applications. Metallurgists concluded that they had the necessary information on superplasticity and so theoretical studies focussed mostly on understanding the physical and metallurgi cal properties of superplastic materials. Practical applications, in contrast, were led by empirical approaches, rules of thumb and creative design. It has become clear that mathematical models of superplastic deformation as well as analyses for metal working processes that exploit the superplastic state are not adequate. A systematic approach based on the methods of mechanics of solids is likely to prove useful in improving the situation. The present book aims at the following. 1. Outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials. 2. Assess the present level of investigations on the mechanical behaviour of superplastics. 3. Formulate the main issues and challenges in mechanics ofsuperplasticity. 4. Analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics. 5. Review the models of superplastic metal working processes. 6. Indicate with examples new results that may be obtained using the methods of mechanics of solids.
Designed to support the need of engineering, management, and other professionals for information on titanium by providing an overview of the major topics, this book provides a concise summary of the most useful information required to understand titanium and its alloys. The author provides a review of the significant features of the metallurgy and application of titanium and its alloys. All technical aspects of the use of titanium are covered, with sufficient metals property data for most users. Because of its unique density, corrosion resistance, and relative strength advantages over competing materials such as aluminum, steels, and superalloys, titanium has found a niche in many industries. Much of this use has occurred through military research, and subsequent applications in aircraft, of gas turbine engines, although more recent use features replacement joints, golf clubs, and bicycles.Contents include: A primer on titanium and its alloys, Introduction to selection of titanium alloys, Understanding titanium's metallurgy and mill products, Forging and forming, Castings, Powder metallurgy, Heat treating, Joining technology and practice, Machining, Cleaning and finishing, Structure/processing/property relationships, Corrosion resistance, Advanced alloys and future directions, Appendices: Summary table of titanium alloys, Titanium alloy datasheets, Cross-reference to titanium alloys, Listing of selected specification and standardization organizations, Selected manufacturers, suppliers, services, Corrosion data, Machining data.
This book combines the perspectives of materials science of Superplasticity, on the one hand, and those of design and mechanics, on the other, in order to provide a holistic view of materials, design, mechanics and performance which will lead to useful solutions of societal benefits, in addition to providing great intellectual challenges. After considering the experimental evidence for superplasticity in different classes of materials, the book discusses the physics-based models, along with their advantages and limitations. Then, the analyses for superplastic forming available in the framework of continuum mechanics, finite element analysis and numerical simulations are presented. Finally, the authors highlight some successful industrial applications. This book is recommended as a text book for courses on Superplasticity and as supplementary use for courses on Materials Processing, Manufacturing, High Temperature Deformation, Nanotechnology and Mechanical Behavior of Materials. Persons working in Department of Materials Science and Engineering, Physics, Mechanics, Mechanical Engineering, Aerospace Engineering, Metallurgy, Ceramics and Geo-sciences are likely to find the book to be useful. It is also recommended as a reference source for practicing engineers involved in the design, processing and manufacture of industrial components, which exploit the unique properties associated with superplastic materials.
This book covers the mechanism, salient features, and important aspects of various subtractive, additive, forming and hybrid techniques to manufacture near net-shaped products. The latest research in this area as well as possible future research are also highlighted.
The book presents practical and theoretical works on superplasticity in metals and ceramics, on deformation mechanisms, on processes to obtain large ultrafine-grained structures, on advanced characterization techniques, and on hot deformation of advanced materials. Key papers focus on (1) processing of metallic alloys for achieving exceptional superplastic properties, (2) high-pressure sliding (HPS) processes, (3) in-situ neutron and synchrotron methods, and (4) ultra-severe plastic deformation. Keywords: Superplasticity, Superfunctionality, High-pressure Sliding, High-pressure Torsion, Precise Forming, Numerical Simulation, Aeronautical Parts, Near-unconstrained Superplastic Parts, Low-temperature Superplasticity, Friction Stir Processing, Microstructure Evolution, Corrosion Properties, Duplex Stainless Steel, Grain Boundary Sliding, Laminated Materials, Asymmetric Hot Rolling, Uniaxial Hot Pressing, Diffusion Bonding.
Presented here are 88 refereed papers given at the 35th MATADOR Conference held at the National University of Taiwan in Taipei, Taiwan in July 2007. The MATADOR series of conferences covers the topics of Manufacturing Automation and Systems Technology, Applications, Design, Organisation and Management, and Research. The proceedings of this conference contains original papers contributed by researchers from many countries on different continents. The papers cover the principles, techniques and applications associated with: manufacturing processes; technology; system design and integration; and computer applications and management. The papers in this volume reflect: • the importance of manufacturing in international wealth creation; • the emerging fields of micro- and nano-manufacture; • the increasing trend towards the fabrication of parts using additive processes; • the growing demand for precision engineering and part inspection techniques; • measurement techniques and equipment.