Download Free Superionic Conductors Book in PDF and EPUB Free Download. You can read online Superionic Conductors and write the review.

The monograph is concerned with the results of examination of the properties of superionic conductors and their heterostructures with different electrode materials. Special attention is given to the problems of changes in the characteristics of impedance in a wide frequency range. The author presents theoretical and experimental data on the properties of ionic, ionic-electronic conductors, reversible and polarised interfaces. The directions and specific examples of practical application of superionic conductors and heterostructures based on them are also discussed.
Superionic conductors are solids whose ionic conductivities approach, and in some cases exceed, those of molten salts and electrolyte solutions. This implies an un usual state of matter in which some atoms have nearly liquidlike mobility while others retain their regular crystalline arrangement. This liquid-solid duality has much appeal to condensed matter physicists, and the coincident development of powerful new methods for studying disordered solids and interest in superionic conductors for technical applications has resulted in a new surge of activity in this venerable field. It is the purpose of this book to summarize the current re search in the physics of superionic conduction. with special emphasis on those aspects which set these materials apart from other solids. The volume is aimed to wards the materials community and will, we expect, stimulate further research on these potentially useful substances. The usual characterization of the superionic phase lists high ionic conductivity; low activation energy; and the open structure of the crystal, with its interconne ted network of vacant sites available to one ionic species. To these, as we demon strate in this volume, should be added important dynami~ and collective effect~: the absence of well-defined optical lattice modes, the presence of a pervasive, low-energy excitation, an infrared peak in the frequency-dependent conductivity, unusual NMR prefactors, phase transitions, and a strong tendency for the mobile ion to be found between allowed sites.
A hundred and eighty five chemists, physicists, and engineers met in Schenectady, New York, for the three days May 10-12, 1976, to discuss the subject of Superionic Conductors. This International Conference was held at the Research and Development Center of the General Electric Company. The subject of the Conference was fast ion transport in solids. These materials have potential application in new types of batteries, fuel cells, and sensors. Some like beta alumina are under active development in nov'el new systems. Their study has also become a popular area of scientific investigation. One objective of the Conference was to provide a forum for interdisciplinary communication between chemists, physicists, and engineers. The Conference was an attempt to bring these groups together, in order to listen to each others problems and progress. We began organizing the Conference in the spring of 1975. It was suggested to General Electric managers Drs. Craig S. Tedmon, Jr. and Roland W. Schmitt. They provided immediate and enthusiastic support. They also provided the advice, staff, and backup which were necessary at all points in the planning and duration of the Conference. We were also pleased that they could participate in the Conference: Dr. Tedmon welcomed the participants and officially opened the Conference, and Dr. Schmitt gave the after banquet address. We thank them. Additional and invaluable help, and advice, were also provided by Drs. D. Chatterji, J. B. Bush, G. W. Ludwig, and J. B. Comly. We were joined on the program committee by Drs.
The following chapters present most of the lectures delivered at the NATO Advanced Studies Institute on "The Physics of Super ionic Conductors and Electrode Materials", held at Odense Univer sity's Mathematics Department between the 4th and 22nd of August, 1980. The aim of the organizing committee was to present in a rather detailed fashion the most recent advances in the computa tional mathematics and physics of condensed matter physics and to see how these advances could be applied to the study of ionically conducting solids. The first half of the meeting was mainly taken up with lectures. In the second week, working groups on the various aspects were set up, the students joining these groups being helped in the implementation of the lecture material. The leaders of these groups deserve special mention for the tremendous effort they put into this aspect of the meeting, particularly: Dr. Aneesur Rahman (Molecular Dynamics group) Dr. Fred Horne (Ion Transport group) Drs. Nick Quirke and David Adams (Monte Carlo methods) Dr. Heinz Schulz (Diffraction group) Dr. John Harding (Defect Calculations group) The Molecular Dynamics group achieved a certain amount of notoriety within the University by appearing to live in the terminal room.
This book gives a comprehensive review of proton conductors, including theory, techniques, the materials themselves and applications.
No. 28 of this highly regarded series explores the fundamental and applied aspects of electrochemical science. This volume features two detailed studies on the rapidly developing field of electrochemical surface science.
The field of X-ray spectroscopy using synchrotron radiation is growing so rapidly and expanding into such different research areas that it is now diffi cult to keep up with the literature. EXAFS and XANES are becoming interdis ciplinary methods used in solid-state physics, biology, and chemistry, and are making impressive contributions to these branches of science. The present book gives a panorama of the research activity in this field. It contains the papers presented at the International Conference on EXAFS and Near Edge Structure held in Frascati, Italy, September 13-17, 1982. This was the first international conference devoted to EXAFS spectroscopy (Extended X-ray Ab sorption Fine Structure) and its applications. The other topic of the con ference was the new XANES (X-ray Absorption Near Edge Structure), which in of experimental and theoretical developments finally appears to have terms left its infancy. The applications of EXAFS concern the determination of local structures in complex systems; we have therefore divided the subject matter into differ ent parts on various types of materials: amorphous metals, glasses, solu tions, biological systems, catalysts, and special crystals such as mixed valence systems and ionic conductors. EXAFS provides unique information for each kind of system, but the analysis of EXAFS data also poses special prob lems in each case. General problems of EXAFS data analysis are discussed, as well as developments in instrumentation for X-ray absorption using syn chrotron radiation and laboratory EXAFS.
Condensed matter is one of the most active fields of physics, with a stream of discoveries in areas from superfluidity and magnetism to the optical, electronic and mechanical properties of materials such as semiconductors, polymers and carbon nanotubes. It includes the study of well-characterised solid surfaces, interfaces and nanostructures as well as studies of molecular liquids (molten salts, ionic solutions, liquid metals and semiconductors) and soft matter systems (colloidal suspensions, polymers, surfactants, foams, liquid crystals, membranes, biomolecules etc) including glasses and biological aspects of soft matter. This book presents state-of-the-art research in this exciting field.
Zusammenfassung: This book includes selected peer reviewed articles presented at the 7th International Conference on Materials Engineering and Nanotechnology 2023 (ICMEN 2023) held on 04-05Nov at Kuala Lumpur in Malaysia. It highlights recent innovative approach and developments in materials engineering and nanotechnology fields. A broad range of topics and issues in modern materials science and nanotechnology are discussed, including advanced materials synthesis and characterization, nanoscale science and engineering, functional composite and nanomaterials, sustainable materials and green technologies. The importance and relevance of these proceedings lie in their contribution to the scientific community's collective knowledge and understanding of materials science/engineering and nanotechnology. By disseminating cutting-edge research findings and innovations, these proceedings foster collaboration, inspire new ideas, and push the boundaries of scientific discovery. Given its scope, this book will be of interest to a wide readership, including materials and nanotechnology engineers, scholars and researchers in science, technology and engineering disciplines