Download Free Superfluids Vol 2 Book in PDF and EPUB Free Download. You can read online Superfluids Vol 2 and write the review.

Volume 2 of Novel Superfluids continues the presentation of recent results on superfluids, including novel metallic systems, superfluid liquids, and atomic/molecular gases of bosons and fermions, particularly when trapped in optical lattices. Since the discovery of superconductivity (Leyden, 1911), superfluid 4He (Moscow and Cambridge, 1937), superfluid 3He (Cornell, 1972), and observation of Bose-Einstein Condensation (BEC) of a gas (Colorado and MIT, 1995), the phenomenon of superfluidity has remained one of the most important topics in physics. Again and again, novel superfluids yield surprising and interesting behaviors. The many classes of metallic superconductors, including the high temperature perovskite-based oxides, MgB2, organic systems, and Fe-based pnictides, continue to offer challenges. The technical applications grow steadily. What the temperature and field limits are remains illusive. Atomic nuclei, neutron stars and the Universe itself all involve various aspects of superfluidity, and the lessons learned have had a broad impact on physics as a whole.
This book reports on the latest developments in the field of Superfluidity, one of the most fundamental, interesting, and important problems in physics, with applications ranging from metals, helium liquids, photons in cavities, excitons in semiconductors, to the interior of neutron stars and the present state of the Universe as a whole.
This textbook series has been designed for final year undergraduate and first year graduate students, providing an overview of the entire field showing how specialized topics are part of the wider whole, and including references to current areas of literature and research.
Superfluidity – and closely related to it, superconductivity – are very general phenomena that can occur on vastly different energy scales. Their underlying theoretical mechanism of spontaneous symmetry breaking is even more general and applies to a multitude of physical systems. In these lecture notes, a pedagogical introduction to the field-theory approach to superfluidity is presented. The connection to more traditional approaches, often formulated in a different language, is carefully explained in order to provide a consistent picture that is useful for students and researchers in all fields of physics. After introducing the basic concepts, such as the two-fluid model and the Goldstone mode, selected topics of current research are addressed, such as the BCS-BEC crossover and Cooper pairing with mismatched Fermi momenta.
This 1998 book describes the physics of superconductivity and superfluidity, macroscopic quantum phenomena found in many conductors at low temperatures and in liquid helium 4 and helium 3. In the first part of the book the author presents the mean field theory of generalized pair condensation. This is followed by a description of the properties of ordinary superconductors using BCS theory. The book then proceeds with expositions of strong coupling theory and the Ginzberg-Landau theory. The remarkable properties of superfluid helium 3 are then described, as an example of a superfluid with internal degrees of freedom. The topics covered are dealt with in a coherent manner, with all necessary theoretical background given. Recent topics in the field, such as the copper-oxide high temperature superconductors and exotic superconductivity of heavy fermion systems are discussed in the final chapter. This book will be of interest to graduate students and researchers in condensed matter physics, especially those working in superconductivity and superfluidity.
Volume 2 of Novel Superfluids continues the presentation of recent results on superfluids, including novel metallic systems, superfluid liquids, and atomic/molecular gases of bosons and fermions, particularly when trapped in optical lattices. Since the discovery of superconductivity (Leyden, 1911), superfluid 4He (Moscow and Cambridge, 1937), superfluid 3He (Cornell, 1972), and observation of Bose-Einstein Condensation (BEC) of a gas (Colorado and MIT, 1995), the phenomenon of superfluidity has remained one of the most important topics in physics. Again and again, novel superfluids yield surprising and interesting behaviors. The many classes of metallic superconductors, including the high temperature perovskite-based oxides, MgB2, organic systems, and Fe-based pnictides, continue to offer challenges. The technical applications grow steadily. What the temperature and field limits are remains illusive. Atomic nuclei, neutron stars and the Universe itself all involve various aspects of superfluidity, and the lessons learned have had a broad impact on physics as a whole.
This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that super?uid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the ?ow of the normal ?uid, which was somewhat neglected in the past because of the lack of direct ?ow visualization. Increased computing power is also making it possible to study the coupled motion of super?uid vortices and normal ?uids. Another contact with classical physics arises through the interest in the study of super?uid vortex - connections. Reconnections have been studied for some time in the contexts of classical ?uid dynamics and magneto-hydrodynamics (MHD), and it is useful to learn from the experience acquired in other ?elds.
This textbook covers the main topics in contemporary condensed matter physics in a modern and unified way, using quantum field theory in the functional-integral approach. The book highlights symmetry aspects in acknowledging that much of the collective behaviors of condensed matter systems at low temperatures emerge above a nontrivial ground state, which spontaneously breaks the symmetry.The emphasis is on effective field theories which provide an efficient and powerful description that is valid at long wavelengths and low frequencies. In conjunction with the emphasis on effective theories, a modern approach towards renormalization is taken, whereby a wavenumber cut-off is introduced to set a scale beyond which the microscopic model under consideration ceases to be valid. The unique and innovative character of this presentation, free of historical constraints, allows for a compact and self-contained treatment of the main topics in contemporary condensed matter physics.
A Nobel Laureate presents his view of developments in the field of superconductivity, superfluidity and related theory. The book contains Ginzburg’s amended version of the Nobel lecture in Physics 2003, as well as his expanded autobiography.