Download Free Superconductivity And Magnetism In Skutterudites Book in PDF and EPUB Free Download. You can read online Superconductivity And Magnetism In Skutterudites and write the review.

Superconductivity and Magnetism in Skutterudites discusses superconducting and magnetic properties of a class of materials called skutterudites. With a brief introduction of the fundamental structural features of skutterudites, the book then provides a detailed assessment of the superconducting and magnetic properties, focusing particularly on the rare earth-filled skutterudites where a plethora of fascinating properties and ground states is realized due to interactions of the filler species with the framework ions. Such interactions underpin the exciting forms of superconductivity and magnetism, most notably realized in the exotic heavy fermion superconductor of composition PrOs4Sb12. The two main topics of superconductivity and magnetism are provided with a concise introduction of superconducting and magnetic properties so that a reader can appreciate and understand the main arguments in the text. This book would appeal to graduate students, postdoctoral students, and anyone interested in superconducting and magnetic properties of a large family of minerals called skutterudites. Key Features: • Gives a thorough account of the superconducting and magnetic properties of skutterudites. • Each topic is accompanied by introductory sections to assist in the understanding of the text. • Supported by numerous figures and all key references.
Superconductivity and Magnetism in Skutterudites discusses superconducting and magnetic properties of a class of materials called skutterudites. With a brief introduction of the fundamental structural features of skutterudites, the book then provides a detailed assessment of the superconducting and magnetic properties, focusing particularly on the rare earth-filled skutterudites where a plethora of fascinating properties and ground states is realized due to interactions of the filler species with the framework ions. Such interactions underpin the exciting forms of superconductivity and magnetism, most notably realized in the exotic heavy fermion superconductor of composition PrOs4Sb12. The two main topics of superconductivity and magnetism are provided with a concise introduction of superconducting and magnetic properties so that a reader can appreciate and understand the main arguments in the text. This book would appeal to graduate students, postdoctoral students, and anyone interested in superconducting and magnetic properties of a large family of minerals called skutterudites. Key Features: • Gives a thorough account of the superconducting and magnetic properties of skutterudites. • Each topic is accompanied by introductory sections to assist in the understanding of the text. • Supported by numerous figures and all key references.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 54, is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date, critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines, and integrates, both the fundamentals and applications of these elements. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains Individual chapters that are comprehensive and broad, along with critical reviews - Provides contributions from highly experienced, invited experts
Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.
This thesis explores thermal transport in selected rare-earth-based intermetallic compounds to answer questions of great current interest. It also sheds light on the interplay of Kondo physics and Fermi surface changes. By performing thermal conductivity and electrical resistivity measurements at temperatures as low as 25mK, the author demonstrates that the Wiedemann–Franz law, a cornerstone of metal physics, is violated at precisely the magnetic-field-induced quantum critical point of the heavy-fermion metal YbRh2Si2. This first-ever observation of a violation has dramatic consequences, as it implies a breakdown of the quasiparticle picture. Utilizing an innovative technique to measure low-temperature thermal transport isothermally as a function of the magnetic field, the thesis interprets specific, partly newly discovered, high-field transitions in CeRu2Si2 and YbRh2Si2 as Lifshitz transitions related to a change in the Fermi surface. Lastly, by applying this new technique to thermal conductivity measurements of the skutterudite superconductor LaPt4Ge12, the thesis proves that the system is a conventional superconductor with a single energy gap. Thus, it refutes the widespread speculations about unconventional Cooper pairing in this material.
Studying defects and imperfections in unconventional superconductors is paramount for fundamental and applied research. Defects play a multifaceted role, from decreasing quality and performance in some situations to enhancing desired properties in others, and as a useful probe and a tool to study the fundamental aspects of superconductivity. The examples are quantum decoherence in superconducting qubits, pinning and critical current in superconducting magnets, and in determining the symmetry of the order parameter, respectively. Studying defects and imperfections can provide insights into the underlying physics of unconventional superconductivity, shedding light on the mechanisms that govern the emergence of superconductivity in these materials, as well as the factors that limit their critical current densities and their stability at elevated temperatures and magnetic fields. Understanding the complex mechanisms through which defects influence the properties of superconductors is key to advancing the development and optimization of high performance superconducting materials for modern technologies.
Volume 18 of the Handbook of Magnetic Materials, as the preceding volumes, has a dual purpose. As a textbook it is intended to help those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, Volume 18 is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science. It provides readers with novel trends and achievements in magnetism. - Composed of topical review articles written by leading authorities - Intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism - As a work of reference it is intended for scientists active in magnetism research - Provide the readership with novel trends and achievements in magnetism