Download Free Summation Of The Fourier Series Of Orthogonal Functions Book in PDF and EPUB Free Download. You can read online Summation Of The Fourier Series Of Orthogonal Functions and write the review.

The underlying theme of this monograph is that the fundamental simplicity of the properties of orthogonal functions and the developments in series associated with them makes those functions important areas of study for students of both pure and applied mathematics. The book starts with Fourier series and goes on to Legendre polynomials and Bessel functions. Jackson considers a variety of boundary value problems using Fourier series and Laplace's equation. Chapter VI is an overview of Pearson frequency functions. Chapters on orthogonal, Jacobi, Hermite, and Laguerre functions follow. The final chapter deals with convergence. There is a set of exercises and a bibliography. For the reading of most of the book, no specific preparation is required beyond a first course in the calculus. A certain amount of “mathematical maturity” is presupposed or should be acquired in the course of the reading.
This incisive text deftly combines both theory and practical example to introduce and explore Fourier series and orthogonal functions and applications of the Fourier method to the solution of boundary-value problems. Directed to advanced undergraduate and graduate students in mathematics as well as in physics and engineering, the book requires no prior knowledge of partial differential equations or advanced vector analysis. Students familiar with partial derivatives, multiple integrals, vectors, and elementary differential equations will find the text both accessible and challenging. The first three chapters of the book address linear spaces, orthogonal functions, and the Fourier series. Chapter 4 introduces Legendre polynomials and Bessel functions, and Chapter 5 takes up heat and temperature. The concluding Chapter 6 explores waves and vibrations and harmonic analysis. Several topics not usually found in undergraduate texts are included, among them summability theory, generalized functions, and spherical harmonics. Throughout the text are 570 exercises devised to encourage students to review what has been read and to apply the theory to specific problems. Those preparing for further study in functional analysis, abstract harmonic analysis, and quantum mechanics will find this book especially valuable for the rigorous preparation it provides. Professional engineers, physicists, and mathematicians seeking to extend their mathematical horizons will find it an invaluable reference as well.
Convergence Problems of Orthogonal Series deals with the theory of convergence and summation of the general orthogonal series in relation to the general theory and classical expansions. The book reviews orthogonality, orthogonalization, series of orthogonal functions, complete orthogonal systems, and the Riesz-Fisher theorem. The text examines Jacobi polynomials, Haar's orthogonal system, and relations to the theory of probability using Rademacher's and Walsh's orthogonal systems. The book also investigates the convergence behavior of orthogonal series by methods belonging to the general theory of series. The text explains some Tauberian theorems and the classical Abel transform of the partial sums of a series which the investigator can use in the theory of orthogonal series. The book examines the importance of the Lebesgue functions for convergence problems, the generalization of the Walsh series, the order of magnitude of the Lebesgue functions, and the Lebesgue functions of the Cesaro summation. The text also deals with classical convergence problems in which general orthogonal series have limited significance as orthogonal expansions react upon the structural properties of the expanded function. This reaction happens under special assumptions concerning the orthogonal system in whose functions the expansion proceeds. The book can prove beneficial to mathematicians, students, or professor of calculus and advanced mathematics.
This book presents a systematic coarse on general orthogonal polynomials and Fourie series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness). The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L(2)micro; summability almost everywhere by the Cesaro means and the Poisson-Abel method for Fourier polynomial series are the subject of Chapters 4 and 5). The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials. The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones. Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment. This book is intended for researchers (mathematicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory.