Download Free Summary And Highlights Of The 14th Topical Conference On Hadron Collider Physics Hcp2002 Book in PDF and EPUB Free Download. You can read online Summary And Highlights Of The 14th Topical Conference On Hadron Collider Physics Hcp2002 and write the review.

Hadron colliders probe physics at new energy frontiers and search for new particles and forces. In addition, hadron colliders now provide also an environment for precision physics. The present volume collects the results from recently completed runs at major colliders as well as new ideas about collider physics and techniques. It will serve as the main source of reference in the field for many years to come.
Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved. It discusses a broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model to studies of quantum chromodynamics, the B-physics sector, and the properties of dense hadronic matter in heavy-ion collisions. Covering the topics in a pedagogical manner, the book introduces the theoretical and phenomenological framework of hadron collisions and presents the current theoretical models of frontier physics. It offers overviews of the main detector components, the initial calibration procedures, and search strategies. The authors also provide explicit examples of physics analyses drawn from the recently shut down Tevatron. In the coming years, or perhaps even sooner, the LHC experiments may reveal the Higgs boson and offer insight beyond the Standard Model. Written by some of the most prominent and active researchers in particle physics, this volume equips new physicists with the theory and tools needed to understand the various LHC experiments and prepares them to make future contributions to the field.
In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.
The theoretical understanding of elementary particle interactions has under gone a revolutionary change during the past one and a half decades. The spontaneously broken gauge theories, which in the 1970s emerged as a prime candidate for the description of electro-weak (as weIl as strong) interactions, have been confirmed by the discovery of neutral weak currents as weIl as the w- and Z-bosons. We now have a field theory of electro-weak interactions at energy scales below 100 GeV-the Glashow-Weinberg-Salam theory. It is a renormalizable theory which enables us to do calculations without en countering unnecessary divergences. The burning question now is: Wh at lies ahead at the next level of unification? As we head into the era of supercolliders and ultrahigh energy machines to answer this question, many ap, pealing possi bilities exist: left-right symmetry, technicolor, compositeness, grand unifica ti on, supersymmetry, supergravity, Kaluza-Klein models, and most recently superstrings that even unify gravity along with other interactions. Experi ments will decide if any one or any combination of these is to be relevant in the description of physics at the higher energies. As an outcome of our con fidence in the possible scenerios for elementary particle physics, we have seen our understanding of the early uni verse improve significantly.
East Lansing, Michigan, 14-18 June 2004
This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.