Download Free Successful Composites Technology Transfer Book in PDF and EPUB Free Download. You can read online Successful Composites Technology Transfer and write the review.

The ingenuity and visibility of NASA space programs, such as the max launch abort system (MLAs), are sparking the creativity, knowledge transfer, and unique applications of revolutionary technologies in areas such as aerospace, wind energy, transportation, oil, safety, and civil infrastructure. Lightweight, high-strength, carbon-fiber composites materials, vacuum-assisted resin transfer molding, smart sensors, out-of-autoclave curing of autoclave composites, unified structures, structural health monitoring systems, smart phone/RFID tracking, determinant assembly, forensic engineering, and the digital tapestry that ties everything together are just a few of the technological advances perfected in NASA’s programs. Successful composites technology transfer takes the discussion of these technologies to the next level — addressing the advantages and challenges to their more widespread industrial application. Readers will get insight into how high-strength, carbon-fiber composites and its related technologies are making inroads into products such as commercial airplane seats and carts, turbine blades, firefighting equipment, trucks, buses, lifting and support devices, and containers. The author shares breakthrough thinking on other potential applications, such as a new lighter than air ship, prototype vehicles, driver health and safety, firefighter safety, and bridge infrastructure safety and health monitoring. According to Foreword author, Tim Shinbara, vice president of manufacturing technology at AMT (Association for Manufacturing Technology), “...it is of considerable value to search out, discover, and digest resources such as this book in an effort to continually improve the lens by which we innovate.” Aside from new product innovations, extension of the manufacturing technologies, and processes described herein have the potential to not only add new functionality or modify the existing functionality of existing products and systems, but in many cases, adoption would require minimal effort from the manufacturing enterprise.
Describes an American's experience during the violent Iranian Islamic revolution of 1978 and 1979. Provides insight and revealing commentary relevant to today's US-Iranian negotiations for controlling the development within Iran of nuclear weapons.
The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Factory defines the architecture, key building blocks, and roadmap for actualizing a future airplane factory (FAF) that is digitally optimized for intelligent airplane assembly. They fit and integrate with other FAF building blocks that aggregate to a Digitally Optimized Intelligent Airplane Factory (DOIAF). The word "intelligent" refers to the ability of a system to make right decisions and take right action in the highly dynamic and fluid environment of the modern airplane manufacturing space. The event-driven dynamics inherent in the complexity of this environment drive the need for expert knowledge which resides in intelligence systems incorporating the experience of experts. Expert knowledge need not be smart, brilliant, or possess genius as long as the outcomes are derived from right decisions resulting in right actions-applied rapidly to sustain an optimized factory enterprise. Complete factory enterprise visibility requires a higher order of decision capability that current operating systems do not have. A highly visible factory collects and displays data and information as it happens-at a rate beyond the ability of humans and current systems to analyze, process, decide, and act upon. Expert systems are constructed to present humans with right decisions in the form of optimal choices for right actions by incorporating the knowledge of experts into the logic for the decision. Structured Knowledge-Based Expert Systems (SKBES) are incorporated in this book and defined as a critical component for full enterprise actionable visibility. The power of the Digitally Optimized Intelligent Airplane Factory not only is found in its ability to unify the factory, reduce touch labor, improve quality, and streamline throughput but it also enables a significant reduction in above-the-shop-floor support and management. Such an ecosystem frees the human to focus on the complexity of interpersonal responsibilities. If the use of a DOIAF can be viewed as a holistic mechanism, then the human can be the agent engaging with that mechanism; improving negotiations for pricing, contracts, or other person-to-person events that require instinct and relationship.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance provides a detailed review of lightweight composite materials and structures and discusses their use in the transport industry, specifically surface and air transport. The book covers materials selection, the properties and performance of materials, and structures, design solutions, and manufacturing techniques. A broad range of different material classes is reviewed with emphasis on advanced materials. Chapters in the first two parts of the book consider the lightweight philosophy and current developments in manufacturing techniques for lightweight composite structures in the transport industry, with subsequent chapters in parts three to five discussing structural optimization and analysis, properties, and performance of lightweight composite structures, durability, damage tolerance and structural integrity. Final chapters present case studies on lightweight composite design for transport structures. - Comprehensively covers materials selection, design solutions, manufacturing techniques, structural analysis, and performance of lightweight composite structures in the transport industry - Includes commentary from leading industrial and academic experts in the field who present cutting-edge research on advanced lightweight materials for the transport industry - Includes case studies on lightweight composite design for transport structures