Download Free Subsurface Characterization Book in PDF and EPUB Free Download. You can read online Subsurface Characterization and write the review.

Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface. - Learn from 13 practical case studies using field, laboratory, and simulation data - Become knowledgeable with data science and analytics terminology relevant to subsurface characterization - Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support
Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources
Contains selected papers from the title international symposium, held in January 1994 in San Francisco, CA. Sections on remote sensing applications, geographic information system (GIS), site characterization, and standards detail the latest findings in areas such as digital elevation data; Landsat T
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 171. Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: Approaches to hydrologie data integration Data integration for characterization of hydrologie properties Data integration for understanding hydrologie processes Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
The topic of site characterization is unique to geotechnical engineering and owes its significance directly to the variability of the natural geologic deposits on the earth’s surface. Proper site characterization requires an understanding of various field and laboratory investigation methods. The book discusses the suitability of various methods under different site conditions and presents the procedures to derive design parameters based on interpretation of test results. Recent developments in specialized site characterization methods (such as seismic hazard evaluation) are also included. Three recent case histories are presented, where site characterization played a key role. The three disparate cases include soft natural soil under static loading, coarse and fine-grained soil under seismic impact, and hazardous waste deposits under both static and seismic loading. Site investigation requirements of building codes are discussed and guidelines for preparing a typical site characterization report are presented. The book is aimed at the practicing geotechnical engineer, as well as advanced undergraduate and graduate students.
Interpreting Subsurface Seismic Data presents recent advances in methodologies for seismic imaging and interpretation across multiple applications in geophysics including exploration, marine geology, and hazards. It provides foundational information for context, as well as focussing on recent advances and future challenges. It offers detailed methodologies for interpreting the increasingly vast quantity of data extracted from seismic volumes. Organized into three parts covering foundational context, case studies, and future considerations, Interpreting Subsurface Seismic Data offers a holistic view of seismic data interpretation to ensure understanding while also applying cutting-edge technologies. This view makes the book valuable to researchers and students in a variety of geoscience disciplines, including geophysics, hydrocarbon exploration, applied geology, and hazards. - Presents advanced seismic detection workflows utilized cutting-edge technologies - Integrates geophysics and geology for a variety of applications, using detailed examples - Provides an overview of recent advances in methodologies related to seismic imaging and interpretation
This volume is meant to provide the practitioner with information on the natural mixing processes occurring in aquifers as well as to describe basic strategies that can be implemented to enhance mixing in particular cases. For example, when it comes to mixing miscible liquids, one can speed up mixing in the formation by manipulating the flow such as through the use of recirculation wells. Furthermore, much of the mixing can be achieved partially within recirculation wells themselves, where contaminated water is admixed with additives, volatile products may be removed through a vapor mass exchanger, etc. Thus, adding mixing wells can significantly increase the performance of the delivery and mixing system and speed up the process of remediation.
Site characterization is a fundamental step towards the proper design, construction and long term performance of all types of geotechnical projects, ranging from foundation, excavation, earth dams, embankments, seismic hazards, environmental issues, tunnels, near and offshore structures. Geotechnical and Geophysical Site Characterization 4 provides practical applications of novel and innovative technologies in geotechnical and geophysical engineering, and is of interest to academics, engineers and professionals involved in Geotechnical Engineering.