Download Free Submarine Mass Movements And Their Consequences Book in PDF and EPUB Free Download. You can read online Submarine Mass Movements And Their Consequences and write the review.

Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, nearshore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979, Papua-New Guinea in 1998, Stromboli in 2002, Finneidfjord in 1996, and the 2006 and 2009 failures in the submarine cable network around Taiwan. The Great East Japan Earthquake in March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami. Given that 30% of the World’s population live within 60 km of the coast, the hazard posed by submarine landslides is expected to grow as global sea level rises. This elevated awareness of the need for better understanding of submarine landslides is coupled with great advances in submarine mapping, sampling and monitoring technologies. Laboratory analogue and numerical modeling capabilities have also developed significantly of late. Multibeam sonar, 3D seismic reflection, and remote and autonomous underwater vehicle technologies provide hitherto unparalleled imagery of the geology beneath the oceans, permitting investigation of submarine landslide deposits in great detail. Increased and new access to drilling, coring, in situ measurements and monitoring devices allows for ground-thruth of geophysical data and provides access to samples for geotechnical laboratory experiments and information on in situ strength and effective stress conditions of underwater slopes susceptible to fail. Great advances in numerical simulation techniques of submarine landslide kinematics and tsunami propagation, particularly since the 2004 Sumatra tsunami, have also lead to increased understanding and predictability of submarine landslide consequences. This volume consists of the latest scientific research by international experts in geological, geophysical, engineering and environmental aspects of submarine mass failure, focused on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.
This book is a comprehensive collection of state-of-the-art studies of seafloor slope instability and their societal implications. The volume captures the most recent and exciting scientific progress made in this research field. As the world’s climate and energy needs change, the conditions under which slope instability occurs and needs to be considered, are also changing. The science and engineering of submarine – or more widely subaqueous – mass movements is greatly benefiting from advances in seafloor and sub-seafloor surveying technologies. Ultra-high-resolution seafloor mapping and 3D seismic reflection cubes are becoming commonly available datasets that are dramatically increasing our knowledge of the mechanisms and controls of subaqueous slope failure. Monitoring of slope deformation, repeat surveying and deep drilling, on the other hand, are emerging as important new techniques for understanding the temporal scales of slope instability. In essence, rapid advances in technology are being readily incorporated into scientific research and as a result, our understanding of submarine mass movements is increasing at a very fast rate. The volume also marks the beginning of the third IGCP project for the submarine mass movement research community, IGCP-640 S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs). The Submarine Mass Movements and Their Consequences symposium is the biannual meeting under the IGCP umbrella.
Recent global events such as the devastating 1998 Papua New Guinea tsunami, the 2004 Sumatran tsunami and the 2006 SE Asia undersea network cable failure underscore the societal and economic effects of submarine mass movements. These events call upon the scientific community to understand submarine mass movement processes and consequences to assist in hazard assessment, mitigation and planning. Additionally, submarine mass movements are beginning to be recognized as prevalent in continental margin geologic sections. As such, they represent a significant if not dominant role in margin sedimentary processes. They also represent a potential hazard to hydrocarbon exploration and development, but also represent exploration indicators and targets. This volume consists of a collection of the latest scientific research by international experts in geological, geophysical, engineering and environment aspects of submarine mass failures, focussed on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.
With contributions from leading researchers in science and engineering, this book provides a global perspective on submarine mass movements and their consequences. Authors report on new findings from fundamental as well as site-specific studies from around the world. All studies relied on the most recent technologies, including multi-beam sonar imaging techniques, 3D seismic analysis, slope stability analysis, debris flow, and tsunami modeling.
Did you know that the Grand Bank earthquake of 1929 triggered a huge submarine mass movement which broke submarine cables over a distance of up to 1000 km from its source and generated a tsunami which devastated a small village in Newfoundland killing 27 people? The same happened in Papua New Guinea in 1998 with more than 2000 casualties. Submarine mass movements of various sizes and styles are shaping the sea floor and are of concern for many facets of human activities both onshore and offshore. These include the development of natural resources, energy and communication transport, coastal infrastructures and communities. This book provides a world-wide perspective of submarine mass movements and their consequences. This has been made possible by assembling excellent contributions from active researchers, groups, or institutions, thus providing full coverage of the many scientific and engineering aspects of this type of marine and coastal geo-hazard. It covers fundamental as well as site specific studies from many areas including the Atlantic and Pacific oceans, inner seas like the Mediterranean Sea, and fjords using the most recent technologies from multibeam sonar imaging techniques, 3D seismic analysis, slope stability analysis, to debris flow and tsunami modeling. Audience: This book is of interest to any researcher in the field of marine and coastal geo-hazards. It will be useful for planners, scientists and engineers involved in the development of offshore and near-shore resources and also to those in charge of the management and mitigation of coastal hazards. For graduate students, this book provides an up-to-date vision of the process of submarine mass movements and their consequences from both a scientific and an engineering standpoint, and it includes a unique collection of the existing literature on marine geo-hazards. CD-Rom included This volume contains a CD-Rom which in addition to an electronically searchable version of the contributions, has full colour versions of figures which are printed in black and white in the book.
Submarine mass movements are a hidden geohazard with large destructive potential for submarine installations and coastal areas. This hazard and associated risk is growing in proportion with increasing population of coastal urban agglomerations, industrial infrastructure, and coastal tourism. Also, the intensified use of the seafloor for natural resource production, and deep sea cables constitutes an increasing risk. Submarine slides may alter the coastline and bear a high tsunamogenic potential. There is a potential link of submarine mass wasting with climate change, as submarine landslides can uncover and release large amounts greenhouse gases, mainly methane, that are now stored in marine sediments. The factors that govern the stability of submarine slopes against failure, the processes that lead to slope collapses and the collapse processes by themselves need to be better understood in order to foresee and prepare society for potentially hazardous events. This book volume consists of a collection of cutting edge scientific research by international experts in the field, covering geological, geophysical, engineering and environmental aspects of submarine slope failures. The focus is on understanding the full spectrum of challenges presented by this major coastal and offshore geohazard.
An examination of ancient and contemporary submarine landslides and their impact Landslides are common in every subaqueous geodynamic context, from passive and active continental margins to oceanic and continental intraplate settings. They pose significant threats to both offshore and coastal areas due to their frequency, dimensions, and terminal velocity, capacity to travel great distances, and ability to generate potentially destructive tsunamis. Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles examines the mechanisms, characteristics, and impacts of submarine landslides. Volume highlights include: Use of different methodological approaches, from geophysics to field-based geology Data on submarine landslide deposits at various scales Worldwide collection of case studies from on- and off-shore Potential risks to human society and infrastructure Impacts on the hydrosphere, atmosphere, and lithosphere
Subaqueous landslides are a common slope process in the geological record. In addition to their geological significance, they pose a risk to offshore infrastructure and can trigger destructive tsunamis affecting coastal communities. This volume offers a multi-disciplinary approach to document better the still poorly understood frequency and dynamics of subaqueous landslides.
This book documents the First World Landslide Forum, which was jointly organized by the International Consortium on Landslides (ICL), eight UN organizations (UNESCO, WMO, FAO, UN/ISDR, UNU, UNEP, World Bank, UNDP) and four NGOs (International Council for Science, World Federation of Engineering Organizations, Kyoto Univ. and Japan Landslide Society) in Tokyo in 2008. The material consists of four parts: The Open Forum "Progress of IPL Activities; Four Thematic Lectures in the Plenary Symposium "Global Landslide Risk Reduction"; Six Keynote Lectures in the Plenary session; and the aims and overviews of eighteen parallel sessions (dealing with various aspects necessary for landslide disaster risk reduction such as: observations from space; climate change and slope instability; landslides threatening heritage sites; the economic and social impact of landslides; monitoring, prediction and early warning; and risk-management strategies in urban area, etc.) Thus it enables the reader to benefit from a wide range of research intended to reduce risk due to landslide disasters as presented in the first global multi-disciplinary meeting.
This GSL volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardising global datasets for quantitative analysis, constructing a global database, and leading international research projects. This volume demonstrates the breadth of investigation taking place into subaqueous landslides, and shows that while events like the recent ones in the Indonesian archipelago can be devastating they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.