Download Free Subjet Multiplicity Of Quark And Gluon Jets Reconstructed With The K Algorithm In P P Collisions Book in PDF and EPUB Free Download. You can read online Subjet Multiplicity Of Quark And Gluon Jets Reconstructed With The K Algorithm In P P Collisions and write the review.

This thesis presents some of the first experimental results of the k⊥ jet algorithm at a hadron collider. Gluon jets dominate the final state of proton-antiproton (pp¯) collisions at high center-of-mass energies ( s = 1800 GeV). Quark jets make up a significant fraction of the jet cross section only at high jet transverse momentum pT or low s . For fixed pT, we compare jets at s = 1800 GeV to s = 630 GeV, and interpret differences in terms of differing contributions from gluon and quark jets. We define jets with a successive combination algorithm based on relative transverse momenta ( k⊥ ). To study jet structure, the k⊥ algorithm is then applied within the jet to resolve subjets. We measure the number of subjets within mixed quark and gluon jet samples at s = 1800 and 630 GeV. A simple method is used to extract measurements of pure quark and gluon jet samples separately. The method requires knowledge of the relative mix of quarks and gluons in the two s samples, which we derive from Monte Carlo and a detailed detector simulation. The number of subjets emitted in gluon jets is measured to be approximately twice that in quark jets.
This book contains write-ups of lectures from a summer school for advanced graduate students in elementary particle physics. In the first lecture, Scott Willenbrock gives an overview of the standard model of particle physics. This is followed by reviews of specific areas of standard model physics: precision electroweak analysis by James Wells, quantum chromodynamics and jets by George Sterman, and heavy quark effective field by Matthias Neubert. Developments in neutrino physics are discussed by André de Gouvea and the theory behind the Higgs boson is addressed by Laura Reina. Collider phenomenology from both experimental and theoretical perspectives are highlighted by Heidi Schellman and Tao Han. A brief survey of dynamical electroweak symmetry breaking is provided by R Sekhar Chivukula and Elizabeth H Simmons. Martin Schmaltz covers the recent proposals for “little” Higgs theories. Markus Luty describes what is needed to make supersymmetric theories realistic by breaking supersymmetry. There is an entire series of lectures by Raman Sundrum, Graham Kribs, and Csaba Csáki on extra dimensions. Finally, Keith Olive completes the book with a review of astrophysics.
This book contains write-ups of lectures from a summer school for advanced graduate students in elementary particle physics. In the first lecture, Scott Willenbrock gives an overview of the standard model of particle physics. This is followed by reviews of specific areas of standard model physics: precision electroweak analysis by James Wells, quantum chromodynamics and jets by George Sterman, and heavy quark effective field by Matthias Neubert. Developments in neutrino physics are discussed by Andr‚ de Gouvea and the theory behind the Higgs boson is addressed by Laura Reina. Collider phenomenology from both experimental and theoretical perspectives are highlighted by Heidi Schellman and Tao Han. A brief survey of dynamical electroweak symmetry breaking is provided by R Sekhar Chivukula and Elizabeth H Simmons. Martin Schmaltz covers the recent proposals for ?little? Higgs theories. Markus Luty describes what is needed to make supersymmetric theories realistic by breaking supersymmetry. There is an entire series of lectures by Raman Sundrum, Graham Kribs, and Csaba Cs ki on extra dimensions. Finally, Keith Olive completes the book with a review of astrophysics.
Written by authors working at the forefront of research, this accessible treatment presents the current status of the field of collider-based particle physics at the highest energies available, as well as recent results and experimental techniques. It is clearly divided into three sections; The first covers the physics -- discussing the various aspects of the Standard Model as well as its extensions, explaining important experimental results and highlighting the expectations from the Large Hadron Collider (LHC). The second is dedicated to the involved technologies and detector concepts, and the third covers the important - but often neglected - topics of the organisation and financing of high-energy physics research. A useful resource for students and researchers from high-energy physics.
D0 has implemented and studied a k{sub {perpendicular}} jet algorithm for the first time in a hadron collider. The authors have submitted two physics results for publication: the subjet multiplicity in quark and gluon jets and the central inclusive jet cross section measurements. A third result, a measurement of thrust distributions in jet events, is underway. A combination of measurements using several types of algorithms and samples taken at different center-of-mass energies is desirable to understand and distinguish with higher accuracy between instrumentation and physics effects.
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with pT > 500 MeV inside high-momentum jets in dijet events using 20.3 fb-1 of data recorded with the ATLAS detector in pp collisions at √s=8 TeV collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV . The reconstructed charged-particle track multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Lastly, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.