Download Free Studying For Science Book in PDF and EPUB Free Download. You can read online Studying For Science and write the review.

To most of us, learning something "the hard way" implies wasted time and effort. Good teaching, we believe, should be creatively tailored to the different learning styles of students and should use strategies that make learning easier. Make It Stick turns fashionable ideas like these on their head. Drawing on recent discoveries in cognitive psychology and other disciplines, the authors offer concrete techniques for becoming more productive learners. Memory plays a central role in our ability to carry out complex cognitive tasks, such as applying knowledge to problems never before encountered and drawing inferences from facts already known. New insights into how memory is encoded, consolidated, and later retrieved have led to a better understanding of how we learn. Grappling with the impediments that make learning challenging leads both to more complex mastery and better retention of what was learned. Many common study habits and practice routines turn out to be counterproductive. Underlining and highlighting, rereading, cramming, and single-minded repetition of new skills create the illusion of mastery, but gains fade quickly. More complex and durable learning come from self-testing, introducing certain difficulties in practice, waiting to re-study new material until a little forgetting has set in, and interleaving the practice of one skill or topic with another. Speaking most urgently to students, teachers, trainers, and athletes, Make It Stick will appeal to all those interested in the challenge of lifelong learning and self-improvement.
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Unleash powerful teaching and the science of learning in your classroom Powerful Teaching: Unleash the Science of Learning empowers educators to harness rigorous research on how students learn and unleash it in their classrooms. In this book, cognitive scientist Pooja K. Agarwal, Ph.D., and veteran K–12 teacher Patrice M. Bain, Ed.S., decipher cognitive science research and illustrate ways to successfully apply the science of learning in classrooms settings. This practical resource is filled with evidence-based strategies that are easily implemented in less than a minute—without additional prepping, grading, or funding! Research demonstrates that these powerful strategies raise student achievement by a letter grade or more; boost learning for diverse students, grade levels, and subject areas; and enhance students’ higher order learning and transfer of knowledge beyond the classroom. Drawing on a fifteen-year scientist-teacher collaboration, more than 100 years of research on learning, and rich experiences from educators in K–12 and higher education, the authors present highly accessible step-by-step guidance on how to transform teaching with four essential strategies: Retrieval practice, spacing, interleaving, and feedback-driven metacognition. With Powerful Teaching, you will: Develop a deep understanding of powerful teaching strategies based on the science of learning Gain insight from real-world examples of how evidence-based strategies are being implemented in a variety of academic settings Think critically about your current teaching practices from a research-based perspective Develop tools to share the science of learning with students and parents, ensuring success inside and outside the classroom Powerful Teaching: Unleash the Science of Learning is an indispensable resource for educators who want to take their instruction to the next level. Equipped with scientific knowledge and evidence-based tools, turn your teaching into powerful teaching and unleash student learning in your classroom.
In this volume, Longino enters into the complexities of human behavioural research, a domain still dominated by the age-old debate of 'nature versus nurture'. Longino focuses on how scientists study it, specifically sexual behaviour and aggression, and asks what can be known about human behaviour through empirical investigation.
Explains the latest neurological research in the science of learning, stressing the brain's need for sleep, exercise, and focused attention in its processing of new information and creation of memories.
“The Knowledge Machine is the most stunningly illuminating book of the last several decades regarding the all-important scientific enterprise.” —Rebecca Newberger Goldstein, author of Plato at the Googleplex A paradigm-shifting work, The Knowledge Machine revolutionizes our understanding of the origins and structure of science. • Why is science so powerful? • Why did it take so long—two thousand years after the invention of philosophy and mathematics—for the human race to start using science to learn the secrets of the universe? In a groundbreaking work that blends science, philosophy, and history, leading philosopher of science Michael Strevens answers these challenging questions, showing how science came about only once thinkers stumbled upon the astonishing idea that scientific breakthroughs could be accomplished by breaking the rules of logical argument. Like such classic works as Karl Popper’s The Logic of Scientific Discovery and Thomas Kuhn’s The Structure of Scientific Revolutions, The Knowledge Machine grapples with the meaning and origins of science, using a plethora of vivid historical examples to demonstrate that scientists willfully ignore religion, theoretical beauty, and even philosophy to embrace a constricted code of argument whose very narrowness channels unprecedented energy into empirical observation and experimentation. Strevens calls this scientific code the iron rule of explanation, and reveals the way in which the rule, precisely because it is unreasonably close-minded, overcomes individual prejudices to lead humanity inexorably toward the secrets of nature. “With a mixture of philosophical and historical argument, and written in an engrossing style” (Alan Ryan), The Knowledge Machine provides captivating portraits of some of the greatest luminaries in science’s history, including Isaac Newton, the chief architect of modern science and its foundational theories of motion and gravitation; William Whewell, perhaps the greatest philosopher-scientist of the early nineteenth century; and Murray Gell-Mann, discoverer of the quark. Today, Strevens argues, in the face of threats from a changing climate and global pandemics, the idiosyncratic but highly effective scientific knowledge machine must be protected from politicians, commercial interests, and even scientists themselves who seek to open it up, to make it less narrow and more rational—and thus to undermine its devotedly empirical search for truth. Rich with illuminating and often delightfully quirky illustrations, The Knowledge Machine, written in a winningly accessible style that belies the import of its revisionist and groundbreaking concepts, radically reframes much of what we thought we knew about the origins of the modern world.
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Science as Practice and Culture explores one of the newest and most controversial developments within the rapidly changing field of science studies: the move toward studying scientific practice—the work of doing science—and the associated move toward studying scientific culture, understood as the field of resources that practice operates in and on. Andrew Pickering has invited leading historians, philosophers, sociologists, and anthropologists of science to prepare original essays for this volume. The essays range over the physical and biological sciences and mathematics, and are divided into two parts. In part I, the contributors map out a coherent set of perspectives on scientific practice and culture, and relate their analyses to central topics in the philosophy of science such as realism, relativism, and incommensurability. The essays in part II seek to delineate the study of science as practice in arguments across its borders with the sociology of scientific knowledge, social epistemology, and reflexive ethnography.
Rev. ed. of: Studying a study and testing a test / Richard K. Riegelman.
This revised edition of an invaluable handbook introduces new undergraduate bioscience students to the skills needed to succeed in the Life Sciences at University.