Download Free Study On Maximum Likelihood Estimation For Drift Parameters In Stochastic Differential Equations Book in PDF and EPUB Free Download. You can read online Study On Maximum Likelihood Estimation For Drift Parameters In Stochastic Differential Equations and write the review.

Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called the drifted Oscillating Brownian motion. The asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations.
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
There are two sources of information available in empirical research in finance: one corresponding to historical data and the other to prices currently observed in the markets. When proposing a model, it is desirable to use information from both sources. However in modern finance, where stochastic differential equations have been one of the main modeling tools, the common models are typically different for historical data and for current market data. The former are usually assumed to be time homogeneous, while the latter are typically time in-homogeneous. This practice can be explained by the fact that a time-homogeneous model is stationary and easier to estimate, while time-inhomogeneous model are required in order to replicate market data sufficiently well without creating arbitrage opportunities. In this thesis, we study methods of statistical inference, both parametric and non-parametric, for stochastic differential equations with time-dependent parameters. In the first part, we propose a new class of stochastic differential equation with time-dependent drift and diffusion terms, where some of the parameters change according to a hidden Markov process. We show that under some technical conditions this innovative way of modeling switching times renders the resulting model stationary. We also explore different approaches to estimate parameters in our proposed model. Our simulation studies demonstrate that the parameters of the model can be efficiently estimated by using a version of the filtering method proposed in the literature. We illustrate our model and the proposed estimation method by applying them to interest rate data, and we detect significant time variations in early 1980s, when targets of the monetary policy in the United States were changed. One of the known drawbacks of parametric models is the risk of model misspecification. In the second part of the thesis, we allow the drift to be time-dependent and nonparametric, and our objective is to estimate it using a single trajectory of the process. The main idea underlying this method is to approximate the time-dependent function with a sequence of polynomials. Since we can estimate efficiently only a finite number of parameters for any finite length of data, in our method we propose to relate the number of parameters to the length of the observed trajectory. This idea is similar to the method of sieves proposed by Grenander (Abstract Inference, 1981). The asymptotic analysis that we present is based on the assumption that the length of available data $T$ increases to infinity. We investigate two cases, one is a Brownian motion with time-dependent drift and the other corresponds to a class of mean-reverting stochastic differential equations with time-dependent mean-reversion level. In both cases we prove asymptotic consistency and normality of a modified maximum likelihood estimator of the projected time-dependent component. The main challenge in proving our results in the second case stems from two features of the problem: one is due to the fact that coefficients of projections change with $T$ and the other is related to the confounding effect between the mean-reversion speed and the level function. By applying our method to the same interest rate data we use in the first part, we find another evidence of time-variation in the drift term.
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.
Stochastic differential equations (SDEs) are used as statistical models in many disciplines. However, intractable likelihood functions for SDEs make inference challenging, and we need to resort to simulation-based techniques to estimate and maximize the likelihood function. While sequential Monte Carlo methods have allowed for the accurate evaluation of likelihoods at fixed parameter values, there is still a question of how to find the maximum likelihood estimate. In this dissertation we propose an efficient Gaussian-process-based method for exploring the parameter space using estimates of the likelihood from a sequential Monte Carlo sampler. Our method accounts for the inherent Monte Carlo variability of the estimated likelihood, and does not require knowledge of gradients. The procedure adds potential parameter values by maximizing the so-called expected improvement, leveraging the fact that the likelihood function is assumed to be smooth. Our simulations demonstrate that our method has significant computational and efficiency gains over existing grid- and gradient-based techniques. Our method is applied to modeling stock prices over the past ten years and compared to the most commonly used model.