Download Free Study Of The D0 To Pi Pi Pi0 Decay At Babar Book in PDF and EPUB Free Download. You can read online Study Of The D0 To Pi Pi Pi0 Decay At Babar and write the review.

The Dalitz-plot of the decay D° →??−?° measured by the BABAR collaboration shows the structure of a final state having quantum numbers I{sup G}J{sup PC} = 0−02−. An isospin analysis of this Dalitz-plot finds that the fraction of the I = 0 contribution is about 96%. This high I = 0 contribution is unexpected because the weak interaction violates the isospin.
Particle physicists study the smallest particles and most basic rules of their interactions in humankind's current scope. The Charm Analysis Working Group (CWG) of the BaBar Collaboration studies decays involving the charm quark. They currently study mixing in D decays, an interesting and poorly understood phenomenon in current physics models. We, as part of the CWG, investigated the plausibility of using Dalitz plots and the BaBar analysis framework to study mixing in Wrong Sign (WS) D° 2!K[pi][pi]° decays. Others in the CWG have studied mixing in the 2-body decay, D° 2!K[pi]. The 3-body decay analyzed with the RooFitDalitz analysis package and Dalitz plots provides more information and another way of separating Doubly Cabibbo Suppressed Decays (DCSD) from mixing--which share the same end products. Through doing many simulations, we have demonstrated the usefulness of this approach. We selected D° 2!K[pi][pi]° events from Simulation Production run No. 4 (SP4) and BaBar's run 1 and run 2. We made Dalitz plots with this data. Now that we better understand Dalitz plots and software, we plan to select WS D° 2!K[pi][pi]° events and perform rate fits as discussed in BaBar Analysis Document (BAD) No. 443, as well as fits for several different decay times and resonances, in order to further distinguish DCSD from mixing.
The BABAR experiment operating at the PEP-II ee− collider is designed to study CP violation effects in the B-meson system. From May 1999 to June 2002 approximately 81 fb−1 of data have been collected at the [Upsilon](4S) resonance, containing (87.9 ± 1.4) Million BB pairs. From this data sample the branching fraction for the decay B° 2![pi]°[pi]° has been extracted using a multi-dimensional maximum likelihood technique. With an efficiency of 20.4%, we find 3614−1{sup +15+1} B° 2![pi]°[pi]° events and measure the branching fraction to be [Beta](B° 2![pi]°[pi]°) = (2.0{sub -0.8-0.2}{sup +0.9+0.3}) x 10−6 where the first error is statistical and the second systematic. The statistical significance is 3.1[sigma] and we report an upper limit of [Beta](B° 2![pi]°[pi]°)
Issues in General Physics Research / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General Physics Research. The editors have built Issues in General Physics Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Physics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General Physics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Abstract: The Standard Model is the best current description of fundamental interactions and particles; however, the Standard Model has certain shortcomings which have driven particle physicists for the last 30 years to search for phenomena which provide evidence for the next theory beyond the Standard Model. To this end, using the BaBar detector, we search for evidence of the rare decay D* -> D0[pi];D0->[gamma][gamma]. The branching fraction of this decay is enhanced up to 200 times the standard model prediction in certain beyond-the-Standard-Model theories. A measurement of a significant branching fraction would provide evidence for a new theory of particle physics. We describe our search for this rare decay and an improved measurement of the associated decay, B(D0-> [pi]0 [pi]0) using an integrated luminosity corresponding to 470.5 fb−1 of e e− data collected by the BaBar detector at the PEP-II asymmetric ee− collider at SLAC from 1999-2007. We place an upper limit of B(D0->[gamma][gamma]) 2.51 X 10−6 at 90% confidence level and find B(D0-[pi]0[pi]0) = (8.4 " 0.1 " 0.4 " 0.3) X 10−4.
Analyzing D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} decays, herein are presented the methods and results of a search for D{sup 0}-{bar D}{sup 0} mixing, a measurement of the branching ratio R {equivalent_to} {Lambda}(D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}{pi}{sup 0}), and measurements of the contributions from D{sup 0} {yields} K{sup +}{rho}{sup -}, K*{sup +}{pi}{sup -}, K*{sup 0}{pi}{sup 0}; 230.4 fb{sup -1} of data collected from the BABAR detector at the PEP-II collider during 2000-2004 (Runs 1-4) are analyzed. An event-level tagging technique is developed, which facilitates the accurate determination of doubly Cabibbo-suppressed resonance contributions by suppressing background from Cabibbo-favored decays. The branching ratio is measured as R = (0.214 {+-} 0.008 (stat) {+-} 0.008 (syst))%, with (46.1 {+-} 3.3 (stat) {+-} 2.9 (syst))% of D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} decays proceeding through the channel D{sup 0} {yields} K*{sup +}{pi}{sup -}. The data are consistent with the null-D-mixing hypothesis at a confidence level of 10%, and the expected value of {+-} {radical}(x{sup 2} + y{sup 2}) is measured as -0.013 {+-} 0.010 (stat), indicating negative interference between mixing and doubly Cabibbo-suppressed decay. The expected value of the integrated mixing rate is (x{sup 2} + y{sup 2})/2 = (0.013 {+-} 0.013 (stat))%.
We report on a study of the decay {bar B}{sup 0} {yields} D*{sup +}{omega}{pi}{sup -} with the BABAR detector at the PEP-II B-factory at the Stanford Linear Accelerator Center. Based on a sample of 232 million B{bar B} decays, we measure the branching fraction {Beta}({bar B}{sup 0} {yields} D*{sup +}{omega}{pi}{sup -}) = (2.88 {+-} 0.21(stat.) {+-} 0.31(syst.)) x 10{sup -3}. We study the invariant mass spectrum of the {omega}{pi}{sup -} system in this decay. This spectrum is in good agreement with expectations based on factorization and the measured spectrum in {tau}{sup -} {yields} {omega}{pi}{sup -} {nu}{sub {tau}}. We also measure the polarization of the D*{sup +} as a function of the {omega}{pi}{sup -} mass. In the mass region 1.1 to 1.9 GeV we measure the fraction of longitudinal polarization of the D*{sup +} to be {Lambda}{sub L}/{Lambda} = 0.654 {+-} 0.042(stat.) {+-} 0.016(syst.). This is in agreement with the expectations from heavy-quark effective theory and factorization assuming that the decay proceeds as {bar B}{sup 0} {yields} D*{sup +}{rho}(1450), {rho}(1450) {yields} {omega}{pi}{sup -}.