Download Free Study Of Imaginative Play In Children Using Single Valued Refined Neutrosophic Sets Book in PDF and EPUB Free Download. You can read online Study Of Imaginative Play In Children Using Single Valued Refined Neutrosophic Sets and write the review.

This paper introduces Single Valued Refined Neutrosophic Set (SVRNS) which is a generalized version of the neutrosophic set. It consists of six membership functions based on imaginary and indeterminate aspect and hence, is more sensitive to real-world problems.
Stress binds everyone as we face uncertainty in our lives. So, it is notable that we experience anxiety during this coronavirus disease (COV ID − 19) pandemic context. When we try to handle stress for longer duration leads to chronic, and it can affect both physical and mental health. The scientific techniques to precisely pre-assess or assess mental health disorders are hardly available for the students. This paper intends to provide an explication to pre-assess or assess the mental health of the students amidst this pandemic. We present the notions of single-valued neutrosophic N-soft set (SV NNSS) and the quasi-hyperbolic discounting intertemporal single-valued neutrosophic N-soft set (QHDISV NNSS) to show the mental condition of the students.
This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam.
This volume presents state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, and neutrosophic symmetry, as well as their applications in the real world.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
As a generalization of both single-valued neutrosophic element and hesitant fuzzy element, single-valued neutrosophic hesitant fuzzy element (SVNHFE) is an efficient tool for describing uncertain and imprecise information. Thus, it is of great significance to deal with single-valued neutrosophic hesitant fuzzy information for many practical problems. In this paper, we study the aggregation of SVNHFEs based on some normalized operations from geometric viewpoint. Firstly, two normalized operations are defined for processing SVNHFEs. Then, a series of normalized aggregation operators which fulfill some basic conditions of a valid aggregation operator are proposed. Additionally, a decision-making method is developed for resolving multi-attribute decision-making problems based on the proposed operators.
This contributed volume book aims at discussing transdisciplinary approaches to address common problems. By working transdisciplinarily, researchers coming from different disciplines can work jointly using a shared conceptual framework bringing together disciplinary-specific theories and concepts. There are numerous barriers that can obstruct effective communication between different cultures, communities, religions and geographies. This book shows that through bringing together different disciplines, researchers not only can surpass these barriers but can effectively produce new venues of thought that can positively affect the development and evolution of research and education. The book discusses new and emerging applications of knowledge produced by transdisciplinary efforts and covers the interplay of many disciplines, including agriculture, economics, mathematics, engineering, industry, information technology, marketing, nanoscience, neuroscience, space exploration, human-animal relationships, among others. Consequently, it also covers the relationship between art and science, as one of the most remarkable transdisciplinary approaches that paves the way for new methods in engineering, design, architecture and many other fields.
The plithogenic set is a generalization of crisp, fuzzy, intuitionistic fuzzy, and Neutrosophic sets, it is a set whose elements are characterized by many attributes' values. This book gives some possible applications of plithogenic sets defined by Florentin Smarandache (2018). The authors have defined a new class of special type of graphs which can be applied for plithogenic models.
Deep learning has been widely used in numerous real-world engineering applications and for classification problems. Real-world data is present with neutrality and indeterminacy, which neutrosophic theory captures clearly. Though both are currently developing research areas, there has been little study on their interlinking. We have proposed a novel framework to implement neutrosophy in deep learning models. Instead of just predicting a single class as output, we have quantified the sentiments using three membership functions to understand them better. Our proposed model consists of two blocks, feature extraction, and feature classification.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.