Download Free Study Of Cost Effective Large Advanced Pressurized Water Reactors That Employ Passive Safety Features Book in PDF and EPUB Free Download. You can read online Study Of Cost Effective Large Advanced Pressurized Water Reactors That Employ Passive Safety Features and write the review.

A report of DOE sponsored portions of AP1000 Design Certification effort. On December 16, 1999, The United States Nuclear Regulatory Commission issued Design Certification of the AP600 standard nuclear reactor design. This culminated an 8-year review of the AP600 design, safety analysis and probabilistic risk assessment. The AP600 is a 600 MWe reactor that utilizes passive safety features that, once actuated, depend only on natural forces such as gravity and natural circulation to perform all required safety functions. These passive safety systems result in increased plant safety and have also significantly simplified plant systems and equipment, resulting in simplified plant operation and maintenance. The AP600 meets NRC deterministic safety criteria and probabilistic risk criteria with large margins. A summary comparison of key passive safety system design features is provided in Table 1. These key features are discussed due to their importance in affecting the key thermal-hydraulic phenomenon exhibited by the passive safety systems in critical areas. The scope of some of the design changes to the AP600 is described. These changes are the ones that are important in evaluating the passive plant design features embodied in the certified AP600 standard plant design. These design changes are incorporated into the AP1000 standard plant design that Westinghouse is certifying under 10 CFR Part 52. In conclusion, this report describes the results of the representative design certification activities that were partially supported by the Nuclear Energy Research Initiative. These activities are unique to AP1000, but are representative of research activities that must be driven to conclusion to realize successful licensing of the next generation of nuclear power plants in the United States.
This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the performance of safety systems as well as the economic implications of the passive safety systems. Two advanced pressurized water reactors and two advanced boiling water reactors, one representing passive reactors and the other active reactors for each type of coolant, are compared in terms of operation and responses to accidents as reported by the vendors. Considering a simplified decay heat removal system that utilizes an isolation condenser for decay heat removal, the uncertainty in the main parameters affecting the system performance upon a reactor isolation accident is characterized when the system is to rely on natural convection and when it is to rely on a pump to remove the core heat. It is found that the passive system is less certain in its performance if the pump of the active system is tested at least once every five months. In addition, a cost model is used to evaluate the economic differences and benefits between the active and passive reactors. It is found that while the passive systems could have the benefit of fewer components to inspect and maintain during operation, they do suffer from a larger uncertainty about the time that would be required for their licensing due to more limited data on the reliability of their operation. Finally, a survey among nuclear energy experts with a variety of affiliations was conducted to determine the current professional attitude towards these two competing nuclear design options. The results of the survey show that reactors with passive safety systems are more desirable among the surveyed expert groups. The perceived advantages of passive systems are an increase in plant safety with a decrease in cost.
The construction of nuclear power plants in the United States is stopping, as regulators, reactor manufacturers, and operators sort out a host of technical and institutional problems. This volume summarizes the status of nuclear power, analyzes the obstacles to resumption of construction of nuclear plants, and describes and evaluates the technological alternatives for safer, more economical reactors. Topics covered include: Institutional issues-including regulatory practices at the federal and state levels, the growing trends toward greater competition in the generation of electricity, and nuclear and nonnuclear generation options. Critical evaluation of advanced reactors-covering attributes such as cost, construction time, safety, development status, and fuel cycles. Finally, three alternative federal research and development programs are presented.
On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.