Download Free Studies On Dna Conformation And The Molecular Recognition Of Dna By Transcription Factor Proteins Book in PDF and EPUB Free Download. You can read online Studies On Dna Conformation And The Molecular Recognition Of Dna By Transcription Factor Proteins and write the review.

The binding of proteins to DNA and the manipulation of DNA by proteins are crucial aspects of the biological role of DNA in the living cell. This book provides a comprehensive and lucid discussion of the molecular interactions involved.
Providing critical analysis of emerging and well-established topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications. Volume 49 combines reviews on the latest advances in photochemical research with specific highlights in the field. The first section includes periodical reports of the recent literature on physical and inorganic aspects, including reviews of the molecules employed as dyes in art, light induced reactions in cryogenic matrices, photobiological systems studied by time-resolved infrared spectroscopy and photophysics, and photochemistry of transition metal complexes. This selection is completed by reviews of the literature on solar photocatalysis for water decontamination and disinfection and for water splitting/hydrogen production. Coverage continues in the second part with highlighted topics, from the use of aromatic carbonyls as photocatalysts and photoinitiators in synthesis, photoinduced and photocatalysed decarboxylation reactions, development of dye-sensitized solar cells, design of luminescent water-soluble systems, and applications of plasmonic nanoparticles. This volume also includes a third section entitled ‘SPR Lectures on Photochemistry’, where leading scientists in photochemistry provide examples to introduce a photochemical topic to academic readers, offering precious assistance to students in this field.
This book provides both in-depth background and up-to-date information in this area. The chapters are organized by general themes and principles, written by experts who illustrate topics with current findings. Topics covered include: - the role of ions and hydration in protein-nucleic acid interactions - transcription factors and combinatorial specificity - indirect readout of DNA sequence - single-stranded nucleic acid binding proteins - nucleic acid junctions and proteins, - RNA protein recognition - recognition of DNA damage. It will be a key reference for both advanced students and established scientists wishing to broaden their horizons.
This volume has a strong focus on homo-oligomerization, which is surprisingly common. However, protein function is so often linked to both homo- and hetero-oligomerization and many heterologous interactions likely evolved from homologous interaction, so this volume also covers many aspects of hetero-oligomerization.
In this 1993 text, Nobel Prize winner Professor Steitz reviews the wide-ranging research in structural studies of DNA-binding proteins and their complexes with DNA. The author clearly and concisely describes the uses of techniques in molecular genetics, DNA synthesis, protein crystallography and nuclear magnetic response.
This volume contains a series of essays which describe a range of problems in the field of nucleic-acid interactions, investigated by a variety of techniques. An introductory chapter on DNA-protein interactions in the regulation of gene expression is followed by papers on selected model systems.
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease
In this book, the molecular recognition of DNA using small molecules is discussed, with a study of the photochemistry of BrU-labeled DNA. The purposes of the study were to develop small molecules for regenerative medicine, to develop a method to detect the recognition site of small molecules, and to detect the most important biological phenomena using the photochemistry of BrU-labeled DNA. The study began with the design and development of small molecules that can induce pluripotency genes. To deal with the important issue of cell permeability of the original compound, a new analogue of the original with improved gene expression was designed and synthesized. Using the photochemistry of BrU-labeled DNA, crucial biological phenomena such as cooperativity between transcription factors were detected. For the first time, the cooperativity was examined by excess electron transfer assay. DNA was also studied very carefully in order to understand the mechanism of the double-strand break in the UVA micro-irradiation technique. The mechanism of the double strand remained untouched. Nevertheless, the double-strand break mechanism was clearly demonstrated by Hoechst dye, as shown in this book.