Download Free Studies Of Wall Flame Quenching And Hydrocarbon Emissions In A Model Spark Ignition Engine Book in PDF and EPUB Free Download. You can read online Studies Of Wall Flame Quenching And Hydrocarbon Emissions In A Model Spark Ignition Engine and write the review.

Progress is reported in a project concerned with simple modeling and laboratory experiments to elucidate the mechanisms whereby trace amounts of unburned hydrocarbons may persist after the combustion event in Otto-cycle-type internal-combustion-engine cylinders, and the fate of these residual hydrocarbons during the power-stroke and exhaust-event portions of the cycle. The motivation for the research is that a highly fuel-lean fast-burn design for the spark-ignition homogeneous-charge, four-stroke engine may permit exceptionally fuel-efficient operation of this highly driveable, relatively well-understood automotive engine. Work during this period concentrated on the mathematical modelling of wall quenching and turbulent flame propagation. (LCL).
The optimization of combustion in reciprocating engines necessitates an in-depth understanding of the underlying processes as well as accurate and comprehensive physical models. In this respect, the current knowledge on the last stage of combustion in which the flame interacts with the combustion chamber walls is limited. Hence, the objective of this book is to improve the understanding of flame-wall interaction and its modelling. Using a comprehensive analysis of the existing literature on flame-wall interactions as a starting point, the quenching process in a direct-injection spark-ignition engine is investigated via a combination of highly resolved wall heat flux measurements and extensive numerical simulations in order to gain insight into the underlying physical processes. Building on the results, a consistent modelling approach is systematically derived based on the physics of flame quenching and post-flame oxidation. The resulting flame-wall interaction model is based on the G-equation combustion model and incorporates the effects of flame quenching and near-wall turbulence. Finally, the model is applied to simulate combustion in a turbulent channel flow as well as in spark-ignition engines. The results are highlighting the importance of flame-wall interactions for premixed combustion processes in engines and their prediction via simulation.
Emission and fuel economy regulations and standards are compelling manufacturers to build ultra-low emission vehicles. As a result, engineers must develop spark-ignition engines with integrated emission control systems that use reformulated low-sulfur fuel. Emission Control and Fuel Economy for Port and Direct Injected SI Engines is a collection of SAE technical papers that covers the fundamentals of gasoline direct injection (DI) engine emissions and fuel economy, design variable effects on HC emissions, and advanced emission control technology and modeling approaches. All papers contained in this book were selected by an accomplished expert as the best in the field; reprinted in their entirety, they present a pathway to integrated emission control systems that meet 2004-2009 EPA standards for light-duty vehicles.
This book comprehensively discusses diesel combustion phenomena like ignition delay, fuel-air mixing, rate of heat release, and emissions of smoke, particulate and nitric oxide. It enables quantitative evaluation of these important phenomena and parameters. Most importantly, it attempts to model them with constants that are independent of engine types and hence they could be applied by the engineers and researchers for a general engine. This book emphasizes the importance of the spray at the wall in precisely describing the heat release and emissions for most of the engines on and off-road. It gives models for heat release and emissions. Every model is thoroughly validated by detailed experiments using a broad range of engines. The book describes an elegant quasi-one-dimensional model for heat release in diesel engines with single as well as multiple injections. The book describes how the two aspects, namely, fuel injection rate and the diameter of the combustion bowl in the piston, have enabled meeting advanced emission, noise, and performance standards. The book also discusses the topics of computational fluid dynamics encompassing RANS and LES models of turbulence. Given the contents, this book will be useful for students, researchers and professionals working in the area of vehicle engineering and engine technology. This book will also be a good professional book for practising engineers in the field of combustion engines and automotive engineering.