Download Free Studies Of Surfactants And Ions At Liquid Interfaces Book in PDF and EPUB Free Download. You can read online Studies Of Surfactants And Ions At Liquid Interfaces and write the review.

In this thesis we use neutral impact collision ion scattering (NICISS) to study the structure of surfactant covered liquid surfaces. NICISS utilizes low kinetic energy (
This volume will be summarized on the basis of the topics of Ionic Liquids in the form of chapters and sections. It would be emphasized on the synthesis of ILs of different types, and stabilization of amphiphilic self-assemblies in conventional and newly developed ILs to reveal formulation, physicochemical properties, microstructures, internal dynamics, thermodynamics as well as new possible applications. It covers: Topics of ionic liquid assisted micelles and microemulsions in relation to their fundamental characteristics and theories Development bio-ionic liquids or greener, environment-friendly solvents, and manifold interesting and promising applications of ionic liquid based micelles and micremulsions
Offers a comprehensive treatment of surface chemistry and its applications to chemical engineering, biology, and medicine. Focuses on the chmical and physical structure of oil-water interfaces and membrane surfaces. Details interfacial potentials, ion solvation, and electrostatic instabilities in double layers.
This volume will be summarized on the basis of the topics of Ionic Liquids in the form of chapters and sections. It would be emphasized on the synthesis of ILs of different types, and stabilization of amphiphilic self-assemblies in conventional and newly developed ILs to reveal formulation, physicochemical properties, microstructures, internal dynamics, thermodynamics as well as new possible applications. It covers: Topics of ionic liquid assisted micelles and microemulsions in relation to their fundamental characteristics and theories Development bio-ionic liquids or greener, environment-friendly solvents, and manifold interesting and promising applications of ionic liquid based micelles and micremulsions
Surfactant research explores the forces responsible for surfactant assembly and the critical industrial, medical, and personal applications, including viscosity control, microelectronics, drug stabilization, drug delivery, cosmetics, enhanced oil recovery, and foods. Surfactant Science and Technology: Retrospects and Prospects, "a Festschrift in honor of Dr. Kash Mittal," provides a broad perspective with chapters contributed by leaders in the fields of surfactant-based physical, organic, and materials chemistries. Many of the authors participated in a special symposium in Melbourne, Australia, honoring Kash Mittal’s 100th edited book at the 18th Surfactants in Solution (SIS) meeting. Each chapter provides an overview of a specific research area, with discussions on past, present, and future directions. The book is divided into six parts. Part I reviews the evolution of theoretical models for surfactant self-assembly, and introduces a model for interpreting ion-specific effects on aggregate properties. Part II focuses on interactions of surfactant solutions with solid supports; uses contact angles to understand hydrophobic/hydrophilic changes in a lipid layer; uses surface tension to understand molecular arrangements at interfaces; reviews spreading phenomena; discusses pattern formation on solid surfaces; and applies tensiometry to probe flavor components of espresso. Part III discusses novel DNA-based materials, multifunctional poly(amino acid)s–based graft polymers for drug delivery, and polymeric surfactants for stabilizing suspensions and emulsions. Part IV introduces farm-based biosurfactants from natural products and "greener" biosurfactants from bacteria. Part V explores lyotropic liquid crystals and their applications in triggered drug release; microemulsion properties and controlled drug release; the role of hydrotopes in formulations and in enhancing solubilization in liquid crystals; the potential of ionic liquids to generate tunable and selective reaction media; and provides an overview of stimuli-responsive surfactants. Focusing on emulsions, Part VI reviews the design of emulsion properties for various commercial applications, the role of surfactants in the oil and gas industries, and surfactant mechanisms for soil removal via microemulsions and emulsification.
Surfactants... today you have probably eaten some, or rubbed others on your body. Plants, animals (including you) and microorganisms make them, and many everyday products (e.g. detergents, cosmetics, foodstuffs) contain them. Surfactant molecules have one part which is soluble in water and another which is not. This gives surfactant molecules two valuable properties: 1) they adsorb at surfaces (e.g. of an oil droplet in water), and 2) they stick together (aggregate) in water. The aggregates (micelles) are able to dissolve materials not soluble in water alone, and adsorbed surfactant layers, at the surfaces of particles or (say) oil droplets in water, stop the particles or drops sticking together. This is why stable emulsions such as milk do not separate into layers. This book treats the basic physical chemistry and physics underlying the behaviour of surfactant systems. In this book, you will first learn about some background material including hydrophobic hydration, interfacial tension and capillarity (Section I). Discussion of surfactant adsorption at liquid/fluid and solid/liquid interfaces is given in Section II, and includes thermodynamics of adsorption, dynamic and rheological aspects of liquid interfaces and the direct characterisation of surfactant monolayers. In Section III, a description is given of surfactant aggregation to give micelles, lyotropic liquid crystals, microemulsions and Winsor systems. There follows a discussion of surface forces and the way they confer stability on lyophobic colloids and thin liquid films (Section IV). Various dispersions stabilised by adsorbed surfactant or polymer (including solid in liquid dispersions, emulsions and foams) are considered in Section V. The wetting of solids and liquids is explored in Section VI. Like surfactants, small solid particles can adsorb at liquid/fluid interfaces, form monolayers and stabilise emulsions and foams. Such behaviour is covered in Section VII. It is assumed the reader has a knowledge of undergraduate physical chemistry, particularly chemical thermodynamics, and of simple physics. Mathematics (elementary algebra and calculus) is kept at a level consistent with the straightforward derivation of many of the equations presented.
Offering the latest research and developments in the understanding of surfactant behavior in solutions, this reference investigates the role and dynamics of surfactants and their solution properties in the formulation of paints, printing inks, paper coatings, pharmaceuticals, personal care products, cosmetics, liquid detergents, and lubricants. Exploring the science behind techniques from oil recovery to drug delivery, the book covers surfactant stabilized particles; solid particles at liquid interfaces; nanocapsules; aggregation behavior of surfactants; micellar catalysis; vesicles and liposomes; the clouding phenomena; viscoelasticity of micellar solutions; and more.
As the first of its kind, this book provides a valuable introduction for scientists and engineers interested in liquid/fluid interfaces and disperse systems to the rapidly developing area of adsorption dynamics. It is the first extensive review available on the subject of dynamics of adsorption and gives a general summary of the current state of adsorption kinetics theory and experiments. Current progress in recently designed set-ups and improved and generalised known methods for studying interfacial relaxations is reviewed. In addition, the role of the electric charge of surfactants in the adsorption process is discussed in terms of a non-equilibrium distribution of adsorbing ions in the diffuse layer. Present theories of the effect of dynamic adsorption layers on mobile surfaces, such as moving drops and bubbles, based on both diffusion and kinetic controlled adsorption models are described and efficient approximate analytical methods to solve the mathematical problem of coupling surfactant transport and hydrodynamics are introduced. The role of a dynamic adsorption layer in bubble rising, film drainage and film stabilisation and in complex processes such as flotation and microflotation is discussed. Containing more than 1100 references, the book is essential reading for industrial scientists and graduate and post-graduate students in physical, surface and colloid chemistry, physico-chemical hydrodynamics, water purification and mineral processing.
Fluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field.
A solid introduction to the field of surfactant science, this new edition provides updated information about surfactant uses, structures, and preparation, as well as seven new chapters expanding on technology applications. Offers a comprehensive introduction and reference of the science and technology of surface active materials Elaborates, more fully than prior editions, aspects of surfactant crystal structure as well as their effects on applications Adds more information on new classes and applications of natural surfactants in light of environmental consequences of surfactant use