Download Free Studies Of Jets Subjets And Higgs Searches With The Atlas Detector Book in PDF and EPUB Free Download. You can read online Studies Of Jets Subjets And Higgs Searches With The Atlas Detector and write the review.

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
This thesis describes the search for Dark Matter at the LHC in the mono-jet plus missing transverse momentum final state, using the full dataset recorded in 2012 by the ATLAS Experiment. It is the first time that the number of jets is not explicitly restricted to one or two, thus increasing the sensitivity to new signals. Instead, a balance between the most energetic jet and the missing transverse momentum is required, thus selecting mono-jet-like final states. Collider searches for Dark Matter have typically used signal models employing effective field theories (EFTs), even when comparing to results from direct and indirect detection experiments, where the difference in energy scale renders many such comparisons invalid. The thesis features the first robust and comprehensive treatment of the validity of EFTs in collider searches, and provides a means by which the different classifications of Dark Matter experiments can be compared on a sound and fair basis.
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN’s Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.
Questo documento riassume lo stato attuale degli ricerche studi, teorici e sperimentali, sulla produzione di coppie di bosoni di Higgs, e sui vincoli, sia diretti che indiretti, al valore del termine di auto-interazione del bosone di Higgs, con l’intento di servire da referenza per i prossimi anni. Il documento discute lo stato degli studi teorici, includendo le più recenti stime della sezione di produzione di coppie di bosoni di Higgs, sviluppi sulle teorie di campo efficaci, e studi su specifici scenari di nuova fisica che possono contribuire alla produzione di due bosoni di Higgs. Sono presentati i più recenti risultati sperimentali sulle ricerche di coppie di bosoni di Higgs e sui limiti diretti e indiretti al termine di auto-interazione, ottenuti al Large Hadron Collider di Ginevra, con una panoramica delle tecniche sperimentali. Infine, sono discusse le capacità dei collisionatori futuri di determinare il termine di auto-interazione del bosone di Higgs. Questo lavoro è iniziato come raccolta di contributi della conferenza “Di-Higgs ai Colliders”, che ha avuto luogo a Fermilab dal 4 al 9 settembre 2018, ma gli argomenti discussi vanno al di là di quelli presentati alla conferenza, includendo ulteriori sviluppi.
This book provides a general description of the search for and discovery of the Higgs boson (particle) at CERN’s Large Hadron Collider. The goal is to provide a relatively brief overview of the issues, instruments and techniques relevant for this search; written by a physicist who was directly involved. The Higgs boson mat be the one particle that was studied the most before its discovery and the story from postulation in 1964 to detection in 2012 is a fascinating one. The story is told here while detailing the fundamentals of particle physics.
The project reported here was a search for new super symmetric particles in proton-proton collisions at the LHC. It has produced some of the world’s best exclusion limits on such new particles. Furthermore, dedicated simulation studies and data analyses have also yielded essential input to the upgrade activities of the CMS collaboration, both for the Phase-1 pixel detector upgrade and for the R&D studies in pursuit of a Phase-2 end cap calorimeter upgrade.
This thesis focuses on searches for squarks with the ATLAS detector in "compressed" scenarios where the scalar top is very close in mass to the lightest supersymmetric particle. These models are theoretically appealing because the presence of a quasi-degenerate scalar top enhances the self-annihilation cross-section of the lightest supersymmetric particle, acting therefore as a regulator of the dark matter relic density. Two main analyses are presented: the first is a search for scalar tops decaying to charm quarks. The identification of jets originating from the charm quark is very challenging due to its short lifetime. The calibration of tools for charm-tagging has paved the way to measuring the decay of the Higgs boson to pairs of charm quarks. The second analysis presented is the development of a novel technique for reconstructing low momentum b-hadrons. This tool has enabled the ATLAS collaboration to explore topologies that were previously inaccessible.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access