Download Free Structures On Different Time Scales Book in PDF and EPUB Free Download. You can read online Structures On Different Time Scales and write the review.

Volume 1 of this work presents theory and methods to study the structure of condensed matter on different time scales. The authors cover the structure analysis by X-ray diffraction methods from crystalline to amorphous materials, from static-relaxed averaged structures to short-lived electronically excited structures, including detailed descriptions of the time-resolved experimental methods. Complementary, an overview of the theoretical description of condensed matter by static and time-dependent density functional theory is given, starting from the fundamental quantities that can be obtained by these methods through to the recent challenges in the description of time dependent phenomena such as optical excitations. Contents Static structural analysis of condensed matter: from single-crystal to amorphous DFT calculations of solids in the ground state TDDFT, excitations, and spectroscopy Time-resolved structural analysis: probing condensed matter in motion Ultrafast science
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
The behaviour of many complex materials extends over time- and lengthscales well beyond those that can normally be described using standard molecular dynamics or Monte Carlo simulation techniques. As progress is coming more through refined simulation methods than from increased computer power, this volume is intended as both an introduction and a review of all relevant modern methods that will shape molecular simulation in the forthcoming decade. Written as a set of tutorial reviews, the book will be of use to specialists and nonspecialists alike.
This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Agent-based Modeling; - The introduction of a participatory approach involving citizens, in order to utilize an Agent-based Modeling approach to simulate urban-growth scenarios; - A presentation of semantic modeling to enable a flexible application of modeling methods and a flexible exchange of data; - An article about a nested-systems approach to analyzing a city’s interdependent subsystems (according to these subsystems’ different velocities of change); - An article about methods that use Luhmann’s system theory to characterize cities as systems that are composed of flows; - An article that demonstrates how the Sen-Nussbaum Capabilities Approach can be used in urban systems to measure household well-being shifts that occur in response to the resettlement of urban households; - A final article that illustrates how Adaptive Cycles of Complex Adaptive Systems, as well as innovation, can be applied to gain a better understanding of cities and to promote more resilient and more sustainable urban futures.
This book presents the theory of dynamic equations on time scales and applications, providing an overview of recent developments in the foundations of the field as well as its applications. It discusses the recent results related to the qualitative properties of solutions like existence and uniqueness, stability, continuous dependence, controllability, oscillations, etc. Presents cutting-edge research trends of dynamic equations and recent advances in contemporary research on the topic of time scales Connects several new areas of dynamic equations on time scales with applications in different fields Includes mathematical explanation from the perspective of existing knowledge of dynamic equations on time scales Offers several new recently developed results, which are useful for the mathematical modeling of various phenomena Useful for several interdisciplinary fields like economics, biology, and population dynamics from the perspective of new trends The text is for postgraduate students, professionals, and academic researchers working in the fields of Applied Mathematics
First Published in 2004. This special issue of Cognition and Instruction features three manuscripts investigating particular aspects of classroom participant structures, specifically in the context of science instruction. Participant structures is a term introduced four decades ago to describe the roles, rights, and responsibilities regarding who can say what, to whom, and when in the course of classroom activity.
Commodity markets present several challenges for quantitative modeling. These include high volatilities, small sample data sets, and physical, operational complexity. In addition, the set of traded products in commodity markets is more limited than in financial or equity markets, making value extraction through trading more difficult. These facts make it very easy for modeling efforts to run into serious problems, as many models are very sensitive to noise and hence can easily fail in practice. Modeling and Valuation of Energy Structures is a comprehensive guide to quantitative and statistical approaches that have been successfully employed in support of trading operations, reflecting the author's 17 years of experience as a front-office 'quant'. The major theme of the book is that simpler is usually better, a message that is drawn out through the reality of incomplete markets, small samples, and informational constraints. The necessary mathematical tools for understanding these issues are thoroughly developed, with many techniques (analytical, econometric, and numerical) collected in a single volume for the first time. A particular emphasis is placed on the central role that the underlying market resolution plays in valuation. Examples are provided to illustrate that robust, approximate valuations are to be preferred to overly ambitious attempts at detailed qualitative modeling.
This book discusses topics related to the topological structure and biological function of gene networks regulated by microRNAs. It focuses on analyzing the relation between topological structure and biological function, applying these theoretical results to gene networks involving microRNA, illustrating their biological mechanisms, and identifying the roles of microRNA in controlling various phenomena emerging from the networks. In addition, the book explains how to control the complex biological phenomena using mathematical tools and offers a new perspective on studying microRNA. It is a useful resource for graduate students and researchers who are working on or interested in microRNAs and gene network.
The second volume focuses on different experimental facilities interested in structure analysis with pico- and femtosecond X-ray pulses. Besides theoretical foundations of X-ray interaction with matter the authors cover ab-initio based methods for describing structures and their evolution on these time scales, augmented by prototypical research results. The discussion of examples and various scenarios for set-ups is especially helpful for users.