Download Free Structure Based Study Of Viral Replication Book in PDF and EPUB Free Download. You can read online Structure Based Study Of Viral Replication and write the review.

Viral respiratory tract infections are important and common causes of morbidity and mortality worldwide. In the past two decades, several novel viral respiratory infections have emerged with epidemic potential that threaten global health security. This Monograph aims to provide an up-to-date and comprehensive overview of severe acute respiratory syndrome, Middle East respiratory syndrome and other viral respiratory infections, including seasonal influenza, avian influenza, respiratory syncytial virus and human rhinovirus, through six chapters written by authoritative experts from around the globe.
Ch. 1. Human rhinovirus cell entry and uncoating / Renate Fuchs and Dieter Blaas -- ch. 2. Role of lipid microdomains in influenza virus multiplication / Makoto Takeda -- ch. 3. Functions of integrin alpha2beta1, a collagen receptor, in the internalization of echovirus 1 / Varpu Marjomäki [und weitere] -- ch. 4. Entry mechanism of murine and SARS coronaviruses - similarity and dissimilarity / Fumihiro Taguchi -- ch. 5. Hepatitis viruses, signaling events, and modulation of the innate host response / Syed Mohammad Moin, Anindita Kar-Roy and Shahid Jameel -- ch. 6. Virus-cell interaction of HCV / Hideki Tani [und weitere] -- ch. 7. RNA replication of hepatitis C virus / Hideki Aizaki and Tetsuro Suzuki -- ch. 8. Structure and dynamics in viral RNA packaging / Thorsten Dieckmann and Marta Zumwalt -- ch. 9. Rational design of viral protein structures with predetermined immunological properties / James Lara and Yury Khudyakov -- ch. 10. Bioinformatics resources for the study of viruses at the Virginia Bioinformatics Institute / Anjan Purkayastha [und weitere] -- ch. 11. Virus architecture probed by atomic force microscopy / A.J. Malkin [und weitere] -- ch. 12. Filovirus assembly and budding / Takeshi Noda and Yoshihiro Kawaoka -- ch. 13. Challenges in designing HIV Env immunogens for developing a vaccine / Indresh K. Srivastava and R. Holland Cheng -- ch. 14. Insights into the Caliciviridae family / Grant Hansman -- ch. 15. Mathematical approaches for stoichiometric quantification in studies of viral assembly and DNA packaging / Peixuan Guo, Jeremy Hall and Tae Jin Lee -- ch. 16. Virus-like particles of fish nodavirus / Chan-Shing Lin -- ch. 17. The assembly of the double-layered capsids of phytoreoviruses / Toshihiro Omura [und weitere] -- ch. 18. Structure and assembly of human herpesviruses: new insights from cryo-electron microscopy and tomography / Z. Hong Zhou and Pierrette Lo -- ch. 19. Human papillomavirus type 16 capsid proteins: immunogenicity and possible use as prophylactic vaccine antigens / Tadahito Kanda, Kei Kawana and Hiroyuki Yoshikawa -- ch. 20. Chimeric recombinant Hepatitis E virus-like particles presenting foreign epitopes as a novel vector of vaccine by oral administration / Yasuhiro Yasutomi -- ch. 21. Nucleocapsid protein of hantaviruses (Bunyaviridae): structure and functions / Alexander Plyusnin [und weitere] -- ch. 22. Astrovirus replication: an overview / Susana Guix, Albert Bosch and Rosa M. Pintó -- ch. 23. DNA vaccines against viruses / Britta Wahren and Margaret Liu -- ch. 24. Life cycles of polyomaviridae - DNA tumor virus / Masaaki Kawano, Hiroshi Handa and R. Holland Cheng
This book contemplates the structure, dynamics and physics of virus particles: From the moment they come into existence by self-assembly from viral components produced in the infected cell, through their extracellular stage, until they recognise and infect a new host cell and cease to exist by losing their physical integrity to start a new infectious cycle. (Bio)physical techniques used to study the structure of virus particles and components, and some applications of structure-based studies of viruses are also contemplated. This book is aimed first at M.Sc. students, Ph.D. students and postdoctoral researchers with a university degree in biology, chemistry, physics or related scientific disciplines who share an interest or are actually working on viruses. We have aimed also at providing an updated account of many important concepts, techniques, studies and applications in structural and physical virology for established scientists working on viruses, irrespective of their physical, chemical or biological background and their field of expertise. We have not attempted to provide a collection of for-experts-only reviews focused mainly on the latest research in specific topics; we have not generally assumed that the reader knows all of the jargon and all but the most recent and advanced results in each topic dealt with in this book. In short, we have attempted to write a book basic enough to be useful to M.Sc and Ph.D. students, as well as advanced and current enough to be useful to senior scientists with an interest in Structural and/or Physical Virology.
Virus Structure covers the full spectrum of modern structural virology. Its goal is to describe the means for defining moderate to high resolution structures and the basic principles that have emerged from these studies. Among the topics covered are Hybrid Vigor, Structural Folds of Viral Proteins, Virus Particle Dynamics, Viral Gemone Organization, Enveloped Viruses and Large Viruses. - Covers viral assembly using heterologous expression systems and cell extracts - Discusses molecular mechanisms in bacteriophage T7 procapsid assembly, maturation and DNA containment - Includes information on structural studies on antibody/virus complexes
Essential Human Virology, Second Edition focuses on the structure and classification of viruses, virus transmission and virus replication strategies based upon type of viral nucleic acid. Several chapters focus on notable and recognizable viruses and the diseases caused by them, including influenza, HIV, hepatitis viruses, poliovirus, herpesviruses and emerging and dangerous viruses. Additionally, how viruses cause disease (pathogenesis) is highlighted, along with discussions on immune response to viruses, vaccines, anti-viral drugs, gene therapy, the beneficial uses of viruses, research laboratory assays and viral diagnosis assays. Fully revised and updated with new chapters on coronaviruses, nonliving infectious agents, and notable non-human viruses, the book provides students with a solid foundation in virology. - Focuses on human diseases and the cellular pathology that viruses cause - Highlights current and cutting-edge technology and associated issues - Presents real case studies and current news highlights in each chapter - Features dynamic illustrations, chapter assessment questions, key terms, and a summary of concepts, as well as an instructor website with lecture slides, a test bank and recommended activities - Updated and revised, with new chapters on coronaviruses, nonliving infectious agents, and notable non-human viruses
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
A renaissance of virus research is taking centre stage in biology. Empirical data from the last decade indicate the important roles of viruses, both in the evolution of all life and as symbionts of host organisms. There is increasing evidence that all cellular life is colonized by exogenous and/or endogenous viruses in a non-lytic but persistent lifestyle. Viruses and viral parts form the most numerous genetic matter on this planet.
Over the last ten years, much effort has been devoted to improving the biophysical techniques used in the study of viruses. This has resulted in the visualization of these large macromolecular assemblages at atomic level, thus providing the platform for functional interpretation and therapeutic design. Structural Virology covers a wide range of topics and is split into three sections. The first discusses the vast biophysical methodologies used in structural virology, including sample production and purification, confocal microscopy, mass spectrometry, negative-stain and cryo-electron microscopy, X-ray crystallography and nuclear magnetic resonance spectroscopy. The second discusses the role of virus capsid protein structures in determining the functional roles required for receptor recognition, cellular entry, capsid assembly, genome packaging and mechanisms of host immune system evasion. The last section discusses therapeutic strategies based on virus protein structures, including the design of antiviral drugs and the development of viral capsids as vehicles for foreign gene delivery. Each topic covered will begin with a review of the current literature followed by a more detailed discussion of experimental procedures, a step in the viral life cycle, or strategies for therapeutic development. With contributions from experts in the field of structural biology and virology this exceptional monograph will appeal to biomedical scientists involved in basic and /or applied research on viruses. It also provides up-to-date reference material for students entering the field of structural virology as well as scientists already familiar with the area.
In 1980, the World Health Organization (WHO) officially declared that smallpox had been eradicated. In 1986, WHO's international Ad Hoc Committee on Orthopox Virus Infections unanimously recommended destruction of the two remaining official stocks of variola virus, one at the Centers for Disease Control and Prevention and the other at the VECTOR laboratory in Siberia. In June 1999, WHO decided to delay the destruction of these stocks. Informing that decision was Assessment of Future Scientific Needs for Variola Virus, which examines: Whether the sequenced variola genome, vaccinia, and monkey pox virus are adequate for future research or whether the live variola virus itself is needed to assist in the development of antiviral therapies. What further benefits, if any, would likely be gained through the use of variola in research and development efforts related to agent detection, diagnosis, prevention, and treatment. What unique potential benefits, if any, the study of variola would have in increasing our fundamental understanding of the biology, host-agent interactions, pathogenesis, and immune mechanisms of viral diseases.