Download Free Structure And Multiscale Mechanics Of Carbon Nanomaterials Book in PDF and EPUB Free Download. You can read online Structure And Multiscale Mechanics Of Carbon Nanomaterials and write the review.

This book provides a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.
This discovery of carbon nanotubes (CNT) three decades ago ushered in the technological era of nanotechnology. Among the most widely studied areas of CNT research is their use as structural reinforcements in composites. This book describes the development of CNT reinforced metal matrix composites (CNT-MMCs) over the last two decades. The field of CNT-MMCs is abundant in fundamental science, rich in engineering challenges and innovations and ripe for technological maturation and commercialization. The authors have sought to present the current state of the-art in CNT-MMC technology from their synthesis to their myriad potential end-use applications. Specifically, topics explored include: • Advantages, limitations, and evolution of processing techniques used to synthesize and fabricate CNT-MMCs • Emphasizes dispersion techniques of CNTs in metallic systems, a key challenge to the successful and widespread implementation of CNT-MMCs. Methods for quantification and improved control of CNT distributions are presented • Methods for quantification and improved control of CNT distributions are presented • Characterization techniques uniquely suited for charactering these nanoscale materials and their many chemical and physical interactions with the metal matrix, including real-time in-situ characterization of deformation mechanisms • Electron microscope images from premier studies enrich discussions on micro-mechanical modeling, interfacial design, mechanical behavior, and functional properties • A chapter is dedicated to the emergence of dual reinforcement composites that seek to enhance the efficacy of CNTs and lead to material properties by design This book highlights seminal findings in CNT-MMC research and includes several tables listing processing methods, associated CNT states, and resulting properties in order to aid the next generation of researchers in advancing the science and engineering of CNT-MMCs. In addition, a survey of the patent literature is presented in order to shed light on what the first wave of CNT-MMC commercialization may look like and the challenges that will have to be overcome, both technologically and commercially.
This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes.
The discovery of carbon nanotubes has trigged a significant amount of interest in the research community. This is very much due to its impressive physical properties, which were revealed from both theoretical prediction and experimental measurement. The properties such as high strength, high stiffness, low density and structural perfection could make them ideal for many mechanical applications. An up-to-date review on the mechanics of carbon nanotubes is provided. The focus is on mechanical properties, such as Young's modulus, tensile and compressive strength, and buckling criteria. Single scale computational approaches such as classical molecular dynamics and continuum models are outlined.
Nanotechnology is a progressive research and development topic with large amounts of venture capital and government funding being invested worldwide. Nano mechanics, in particular, is the study and characterization of the mechanical behaviour of individual atoms, systems and structures in response to various types of forces and loading conditions. This text, written by respected researchers in the field, informs researchers and practitioners about the fundamental concepts in nano mechanics and materials, focusing on their modelling via multiple scale methods and techniques. The book systematically covers the theory behind multi-particle and nanoscale systems, introduces multiple scale methods, and finally looks at contemporary applications in nano-structured and bio-inspired materials.
The recent emergence of new nano-materials and nanostructures brings up the development of nanotube sheets or the so-called buckypapers for a variety of meaningful applications in actuating and mechanical properties alterations for structural and electromechanical systems. However, the technology of fabrication as well as the understanding of nanomechanics behaviors for nanotube sheets is still in its infancy. This motivates the present research aimed at investigating the mechanical strength properties and potential applications of buckypapers by using finite element methods, atomic scale modeling and simulation, and experimental tests. In the first part of the research, experiment-purpose buckypapers have been fabricated in house to investigate their contributions to the strengths of other macrostructures to which they are integrated. Toward this end, a finite element procedure has been developed for three-dimensional modeling of multilayered nanostructures having embedded buckypapers and the resulted natural frequencies increment due to the high stiffness of buckypapers are agreeably verified by experimental tests. In addition, the experimental testing results further imply that buckypapers have superior damping properties indicated by the clear reductions of the power spectral density readings affected by the buckypaper dampers. This first time investigated and verified profound damping characteristics of buckypapers may be useful for vibration suppression, acoustic noise reduction, and structural enhancement for materials and structures where add-on weight is a concern such as sports equipments and airframes. This theoretical and experimental finding of buckypapers' superior damping property is deemed to be the first major contribution of the dissertation research. To delve into the mechanical properties of carbon nanotubes and buckypapers, in the second part of the dissertation, the atomic scale models of carbon nanotubes and buckypapers are created for the investigation. Along this line, novel simulation models for single and multilayer buckypapers were built which enabled us to understand the bending stiffness and other mechanical properties of buckypapers through an atomic scaled analysis against the existing empirical methods. This new approach of analyzing and observing buckypaper's properties is the second contribution of this dissertation. The results from the simulation gave a reasonably expected Young's moduli for single wall carbon nanotubes comparing to those found in the literature; for single layer and multilayer buckypapers model, higher Young's moduli values obtained in the simulations than previous done experimental testings which are considered mainly due to the exclusion of such factors as particles impurity, uneven thickness, imperfect alignments, etc. Therefore, these higher values may represent the optimal goal of Young's moduli for buckypapers which could be achieved ultimately when their fabrication techniques are continuously improved in the future.
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions
Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches presents various theoretical and numerical studies on mechanical behaviors of carbon nanotubes. The main theoretical aspects included in the book contain classical molecular dynamics simulation, atomistic-continuum theory, atomic finite element method, continuum plate, nonlocal continuum plate, and shell models. Detailed coverage is also given to structural and elastic properties, trace of large deformation, buckling and post-buckling behaviors, fracture, vibration characteristics, wave propagation, and the most promising engineering applications. This book not only illustrates the theoretical and numerical methods for analyzing the mechanical behavior of carbon nanotubes, but also contains computational results from experiments that have already taken place. - Covers various theoretical and numerical studies, giving readers a greater understanding of the mechanical behavior of carbon nanotubes - Includes multiscale methods that provide the advantages of atomistic and continuum approaches, helping readers solve complex, large-system engineering problems - Allows engineers to create more efficient carbon nanotube structures and devices
This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.