Download Free Structure And Mechanics Of Textile Fibre Assemblies Book in PDF and EPUB Free Download. You can read online Structure And Mechanics Of Textile Fibre Assemblies and write the review.

Structure and Mechanics of Textile Fibre Assemblies, Second Edition, offers detailed information on all aspects of textile structure and mechanics. This new edition is updated to include the latest technology and techniques, as well as fiber assembly for major application areas. Chapters discuss the mechanics of materials and key mechanical concepts, such as stress, strain, bending and shear, but also examine structure and mechanics in-depth, including fabric type, covering yarns, woven fabrics, knitted fabrics, nonwovens, tufted fabrics, textile composites, laminated and coated textile fabrics, and braided structures. Finally, structure and mechanics are approached from the viewpoint of key applications areas. This book will be an essential source of information for scientists, technologists, engineers, designers, manufacturers and R&D managers in the textile industry, as well as academics and researchers in textiles and fiber science. - Provides methodical coverage of all essential fabric types, including yarns, woven fabrics, knitted fabrics, nonwovens, tufted fabrics, textile composites, laminated and coated textile fabrics, and braided structures - Enables the reader to understand the mechanical properties and structural parameters of fabric at a highly detailed level - Expanded update includes an analysis of fiber assemblies for key technical areas, such as protective fabrics and medical textiles
Examining the structure and mechanics of materials, this book represents a system of theoretically derived inherent laws of fibrous assemblies and looks specifically at yarns, particularly from a structural point of view.
Edited by a leading expert in the field with contributions from experienced researchers in fibers and textiles, this handbook reviews the current state of fibrous materials and provides a broad overview of their use in research and development. Volume One focuses on the classes of fibers, their production and characterization, while the second volume concentrates on their applications, including emerging ones in the areas of energy, environmental science and healthcare. Unparalleled knowledge of high relevance to academia and industry.
Fabric mechanics are fundamental to the way textiles are designed, tested and manufactured and underpin the way woven fabrics are used in the modern world. With fully comprehensive coverage of all aspects of fabric anisotropy, stress-strain relationships and fabric drape modelling and testing, structure and mechanics of woven fabrics, discusses and exemplifies all major aspects of fabric mechanics and their relevance to every stage of the contemporary textile industry. ?? After a general introduction illustrating the role and study of woven fabric mechanics, the first group of chapters examines the structural, tensile, bending and shear properties of woven fabrics. Sections cover the general behaviour of these properties, how they are modelled and their anisotropy. Drape deformation modelling is covered extensively, one chapter detailing theory and a second, computation and simulation. The properties of fabrics with seams and fabric complex deformation analysis and simulation are also detailed. ?? Structure and mechanics of woven fabrics is an essential reference for all textile academics, students, researchers, technicians, engineers and technologists, covering all areas of textile material applications, from composites and geotextiles, to medical textiles and biotextiles.
Due to their complexity and diversity, understanding the structure of textile fibres is of key importance. This authoritative two-volume collection provides a comprehensive review of the structure of an extensive range of textile fibres.Volume 1 begins with an introductory set of chapters on fibre structure and methods to characterise fibres. The second part of the book covers the structure of manufactured polymer fibres such as polyester, polyamides, polyolefin, elastomeric and aramid fibres as well as high-modulus, high-tenacity polymer fibres. Chapters discuss fibre formation during processing and how this affects fibre structure and mechanical properties. A companion volume reviews natural, regenerated, inorganic and specialist fibres.Edited by leading authorities on the subject and with a team of international authors, the two volumes of the Handbook of textile fibre structure is an essential reference for textile technologists, fibre scientists, textile engineers and those in academia. - The first title of a authoritative two-volume collection that provides a comprehensive review of the structure of a range of textile fibres - Provides an overview of the development of fibre structure and methods to characterise fibres - Examines the structure of both traditional and new fibres and natural and manufactured fibres
The manufacturing processes of composite materials are numerous and often complex. Continuous research into the subject area has made it hugely relevant with new advances enriching our understanding and helping us overcome design and manufacturing challenges. Advances in Composites Manufacturing and Process Design provides comprehensive coverage of all processing techniques in the field with a strong emphasis on recent advances, modeling and simulation of the design process. Part One reviews the advances in composite manufacturing processes and includes detailed coverage of braiding, knitting, weaving, fibre placement, draping, machining and drilling, and 3D composite processes. There are also highly informative chapters on thermoplastic and ceramic composite manufacturing processes, and repairing composites. The mechanical behaviour of reinforcements and the numerical simulation of composite manufacturing processes are examined in Part Two. Chapters examine the properties and behaviour of textile reinforcements and resins. The final chapters of the book investigate finite element analysis of composite forming, numerical simulation of flow processes, pultrusion processes and modeling of chemical vapour infiltration processes. - Outlines the advances in the different methods of composite manufacturing processes - Provides extensive information on the thermo-mechanical behavior of reinforcements and composite prepregs - Reviews numerical simulations of forming and flow processes, as well as pultrusion processes and modeling chemical vapor infiltration
The production of textile materials comprises a very large and complex global industry that utilises a diverse range of fibre types and creates a variety of textile products. As the great majority of such products are coloured, predominantly using aqueous dyeing processes, the coloration of textiles is a large-scale global business in which complex procedures are used to apply different types of dye to the various types of textile material. The development of such dyeing processes is the result of substantial research activity, undertaken over many decades, into the physico-chemical aspects of dye adsorption and the establishment of ‘dyeing theory’, which seeks to describe the mechanism by which dyes interact with textile fibres. Physico-Chemical Aspects of Textile Coloration provides a comprehensive treatment of the physical chemistry involved in the dyeing of the major types of natural, man-made and synthetic fibres with the principal types of dye. The book covers: fundamental aspects of the physical and chemical structure of both fibres and dyes, together with the structure and properties of water, in relation to dyeing; dyeing as an area of study as well as the terminology employed in dyeing technology and science; contemporary views of intermolecular forces and the nature of the interactions that can occur between dyes and fibres at a molecular level; fundamental principles involved in dyeing theory, as represented by the thermodynamics and kinetics of dye sorption; detailed accounts of the mechanism of dyeing that applies to cotton (and other cellulosic fibres), polyester, polyamide, wool, polyacrylonitrile and silk fibres; non-aqueous dyeing, as represented by the use of air, organic solvents and supercritical CO2 fluid as alternatives to water as application medium. The up-to-date text is supported by a large number of tables, figures and illustrations as well as footnotes and widespread use of references to published work. The book is essential reading for students, teachers, researchers and professionals involved in textile coloration.
Textile reinforcement forms (preforms) play an important role in determining the properties of the final composite and product. The preform formation process provides precise control of the fiber architecture and orientation using a suitable textile manufacturing technique. While the techniques employed for preparing glass and carbon preforms are well-known, there is still a gap in understanding on how to prepare natural preforms for composite reinforcements. Multiscale Textile Preforms and Structures for Natural Fiber Composites will bridge this gap by presenting unified knowledge on the relevant preform preparation techniques and resulting fiber architectures. Emphasis is on the structural parameters of each preform and their effect on the final composite properties. This book assembles information and knowledge on natural fiber reinforcement forms, including conventional forms, such as spun yarn, woven, knitted, nonwoven, braided, and comingled. These are illustrated and classified into one-, two-, and three-dimensional reinforcements. This book also includes information on nonconventional preform formation techniques such as unidirectional tapes, pre-impregnated preforms, spread tows, and tailored fiber placement. - Covers all relevant textile processing technology for natural fiber preforms - Provides academic researchers with a better understanding of recent practices in preparing textile reinforcements for natural fiber composites - Helps practitioners determine how to use natural fiber reinforcements in producing new sustainable and innovative composites
Structure and Properties of High-Performance Fibers explores the relationship between the structure and properties of a wide range of high-performance fibers. Part I covers high-performance inorganic fibers, including glasses and ceramics, plus carbon fibers of various types. In Part II, high-performance synthetic polymer fibers are discussed, while Part III reviews those natural fibers that can be used to create advanced textiles. The high-performance properties of these fibers are related to their chemistry and morphology, as well as the ways in which they are synthesized and spun. High-performance fibers form the basis of textile materials with applications in protection, medicine, and composite reinforcement. Fibers are selected for these technical applications due to their advanced physical, mechanical, and chemical properties. - Offers up-to-date coverage of new and advanced materials for the fiber and textile industries - Reviews structure-property relationships of high-performance inorganic, carbon, synthetic polymer, and natural fibers - Includes contributions from an international team of authors edited by an expert in the field - Reviews those natural fibers that can be used to create advanced textiles