Download Free Structure And Function Of Light Transducing Membranes Book in PDF and EPUB Free Download. You can read online Structure And Function Of Light Transducing Membranes and write the review.

Light Transducing Membranes: Structure, Function, and Evolution covers the proceedings of a joint United States-Australia conference held in Honolulu, Hawaii on December 1977. Organized into four parts encompassing 19 chapters, the book focuses on structural, functional, and evolutionary aspects of light energy transduction by membranes. The first part of the book explores the problems of how membrane-related biomolecules could have evolved prior to the origin of life, how amphiphiles might have become organized in lipid bilayer structures, and what mechanisms may have been available for light energy transduction. The mechanisms by which ions, lipids, and proteins interact in membrane systems are described in the next part of the book. Some chapters in the third part of the book cover the analysis of several bacterial membranes as reconstituted, light transducing systems, providing a new tool for investigating basic mechanisms. Relevant aspects of mitochondrial energy transduction are also covered. Finally, the last part presents mechanism analysis by which intact bacteria and chloroplasts interact with light energy, which represent the end product of several billion of years of evolution. Biological evolutionists, biologists, researchers, teachers, and students who are interested in various aspects of light transducing membranes will greatly benefit from this book.
Structure and function of the components of the photosynthetic apparatus and the molecular biology of these components have become the dominant themes in advances in our understanding of the light reactions of oxygenic photosynthesis. Oxygenic Photosynthesis: The Light Reactions presents our current understanding of these reactions in thylakoid membranes. Topics covered include the photosystems, the cytochrome b6-f complex, plastocyanin, ferredoxin, FNR, light-harvesting complexes, and the coupling factor. Chapters are also devoted to the structure of thylakoid membranes, their lipid composition, and their biogenesis. Updates on the crystal structures of cytochrome f, ATP synthase and photosystem I are presented and a section on molecular biology and evolution of the photosynthetic apparatus is also included. The chapters in this book provide a comprehensive overview of photosynthetic reactions in eukaryotic thylakoids. The book is intended for a wide audience, including graduate students and researchers active in this field, as well as those individuals who have interests in plant biochemistry and molecular biology or plant physiology.
Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molecular and cellular mechanisms underlying vision have a high degree of sensitivity and versatility. The aims of visual transduction research are firstto determine which molecules participate, and then to understand how they act in concert to produce the exquisite electrical responses of the photoreceptor cells.Since the 1940s [1] we have known that rod vision begins with the capture of a quantum of energy, a photon, by a visual pigment molecule, rhodopsin. As the function of photon absorption is to convert the visual pigment molecule into a G-protein activating state, the structural details of the visual pigments must beexplained from the perspective of their role in activating their specific G-proteins. Thus, Chapters 1-3 of this Handbook extensively cover the physico-chemical molecular characteristics of the vertebrate rhodopsins. Following photoconversion and G-protein activation, the phototransduction cascade leads to modifications of the population of closed and open ion channels in the photoreceptor plasma membrane, and thereby to the electrical response. The nature of the channels of vertebrate photoreceptors is examined in Chapter 4, and Chapter 5 integrates the present body of knowledge of the activation steps in the cascade into a quantitative framework. Once the phototransduction cascade is activated, it must be subsequently silenced. The various molecular mechanisms participating in inactivation aretreated in Chapters 1-4 and especially Chapter 5. Molecular biology is now an indispensable tool in signal transduction studies. Numerous vertebrate (Chapter 6) and invertebrate (Chapter 7) visual pigments have been characterized and cloned. The genetics and evolutionary aspects of this great subfamily of G-protein activating receptors are intriguing as they present a natural probe for the intimate relationship between structure and function of the visual pigments. Understanding the spectral characteristics from the molecular composition can be expected to
Energy Transduction in Biological Membranes was primarily designed for graduate courses in bioenergetics. Not only does it discuss basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, but also (1) the components and pathways for electron transport and hydrogen ion translocation, and (2) the utilization of electrochemical ion gradients. The book is unique in presenting a comparative treatment of respiratory and photosynthetic energy transduction, and in using protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins.