Download Free Structure And Dynamics Of High Latitude Magnetospheric Boundaries Book in PDF and EPUB Free Download. You can read online Structure And Dynamics Of High Latitude Magnetospheric Boundaries and write the review.

Abstract: Mass, momentum and energy are transferred from the solar wind into the magnetosphere via their interface, the magnetospheric boundaries. High latitude boundaries including the high latitude magnetopause, cusp, entry layer and mantle have been rarely studied since only a few spacecraft have visited there. There are many long standing open questions about high latitude boundaries, e.g., what is the magnetic structure of high latitude boundaries during various interplanetary magnetic field (IMF) conditions? Do the boundaries lose their distinct well-defined edge during southward IMF conditions? How do they respond to outside (solar wind) and inside (magnetic storm and substorm) conditions? What is the behavior of energetic particles in these regions? This dissertation addresses these questions via extensive Cluster data analysis and comparison with global MHD simulations. First, this dissertation presents a statistical study of energetic particles in the cusp region. It presents the first observation that energetic ions exist in the high latitude magnetospheric boundary regions for 80% of the cusp crossings. The spectra of energetic particles with energies greater than 30 keV become flatter for higher solar wind speeds. Second, the high latitude magnetopause has also been studied. When the IMF is northward, the magnetopause adjacent to the cusp is associated with sharp changes in plasma density, velocity, temperature and magnetic field. However, this interface becomes uncertain when the IMF turns southward. A superposed epoch analysis was applied to study the average variations of key plasma parameters across the magnetopause under different conditions for the first time. This dissertation reports the first in-situ observation of collisionless Hall reconnection at the high latitude magnetopause when the IMF B y dominates. Finally, this dissertation compares observations to MHD simulations for a real cusp event. Although the simulated magnetospheres are smaller than the real magnetosphere, the simulated magnetic fields and the amplitude of the model-derived plasma parameters of density, velocity and temperature in the cusp region agree reasonably well with observations. The MHD code qualitatively simulated the responses of the cusp position to the solar wind azimuthal flow for the first time and the formation of the cold dense plasma sheet.
This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere and it appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. Audience: This book will be of interest to space science research organizations in governments and industries, the community of Space Physics scientists and university departments of physics, astronomy, space physics, and geophysics.
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
Exploring the processes and phenomena of Earth’s dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning of the space age. But because they are constantly moving, changing their orientation, and undergoing evolution, the interpretation of single-spacecraft measurements has been plagued by the fundamental inability of a single observer to unambiguously distinguish spatial from temporal changes. The boundaries are thus a prime target for the study by a closely spaced fleet of spacecraft. Thus the Cluster mission, with its four spacecraft in a three-dimensional configuration at variable separation distances, represents a giant step forward. The present 20th volume of the ISSI Space Science Series represents the first synthesis of the exciting new results obtained in the first few years of the Cluster mission.
Earth's Magnetosphere: Formed by the Low Latitude Boundary Layer, Second Edition, provides a fully updated overview of both historical and current data related to the magnetosphere and how it is formed. With a focus on experimental data and space missions, the book goes in depth relating space physics to the Earth’s magnetosphere and its interaction with the solar wind. Starting with Newton’s law, this book also examines Maxwell’s equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation, Helmholtz’ theorem, and Poynting’s theorem, among other methods for understanding this interaction. This new edition of Earth’s Magnetosphere is updated with information on such topics as 3D reconnection, space weather implications, recent missions such as MMS, ionosphere outflow and coupling, and the inner magnetosphere. With the addition of end-of-chapter problems as well, this book is an excellent foundational reference for geophysicists, space physicists, plasma physicists, and graduate students alike. Offers an historical perspective of early magnetospheric research, combined with progress up to the present Describes observations from various spacecraft in a variety of regions, with explanations and discussions of each Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer
A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth’s upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities. Ionosphere Dynamics and Applications provides a comprehensive overview of historic developments, recent advances, and future directions in ionospheric research. Volume highlights include: Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
8. 8 Boundary Layer Structure and Detached Plasma 305 8. 8. 1 Background 305 8. 8. 2 Structure inside the boundary layer 306 8. 8. 3 Observation of detached plasma 308 8. 8. 4 Summary 309 8. 9 Summary and Conclusions 310 References 312 9. CLUSTER AT THE MAGNETOSPHERIC CUSPS 321 9. 1 Introduction 321 9. 1. 1 Previous work 323 9. 1. 2 How Cluster investigates the cusp 325 9. 2 The High-Altitude Cusp 326 9. 2. 1 March 17, 2001 328 9. 2. 2 February 4, 2001 332 9. 2. 3 February 13, 2001 337 9. 2. 4 Statistical survey 340 9. 2. 5 Waves and turbulence 343 9. 3 The Mid-Altitude Cusp 352 9. 3. 1 Structure: Case study 352 9. 3. 2 Structure: Statistical survey 354 9. 3. 3 Ionospheric ions 354 9. 3. 4 Mid-altitude signatures of the LLBL 357 9. 4 Discussion 359 References 360 10. MAGNETOPAUSE PROCESSES 367 10. 1 Magnetopause Reconnection 368 10. 1. 1 Intermittent vs. quasi-steady reconnection 368 10. 1. 2 Component vs. anti-parallel reconnection 382 10. 1. 3 Tailward-of-the-cusp reconnection 385 10. 1. 4 Quantitative tests of reconnection occurrence 388 10. 1. 5 Summary 391 10. 2 Kelvin-Helmholtz Instability at the Flank Magnetopause 391 10. 3 Microphysics of Magnetopause Processes 396 10. 3. 1 Collisionless generalised Ohm’s law 397 10. 3. 2 Ion di?usion region observations 398 10. 3. 3 High-frequency waves 402 10. 3. 4 Lower-hybrid waves 405 10. 3.
Summary of the NATO Advanced Research Workshop on Physical Signatures of Magnetospheric Boundary Layer Processes T A POTEMRA, M I PUDOVKIN, R W SMITH, V M VASYLIUNAS and A EGELAND 451 PREFACE These proceedings are based on the invited talks and selected research reports presented at the NATO Advanced Workshop on "PHYSICAL SIGNATURES OF MAGNETOSPHERIC BOUNDARY LAYER PROCESSES", held at Sundvolden Hotel, Norway, 9.-14.May 1993. The international political and scientific communities have gradually realized that the Earth's environment is more fragile than previously believed. This has led to the establishment of international research programmes directed toward the understanding of "Global Change". The Earth's magnetosphere, "the Earth-space", is a part of our environment, and physical processes in the magnetosphere and coupling between the solar energy stream, the solar wind, and the Earth-space are important in the complete understanding of our environment. Variations in the electromagnetic and particle energy output of the Sun have a significant effect on global changes. The energy transfer mechanisms at the days ide magnetospheric boundary layers and their ionospheric signatures are perhaps even more important to solar terrestrial research than the night-side processes in this connection. The dayside boundary layers and the polar cusps are the Earth's windows to outer space. The present NATO ARW was the latest in a series of conferences focused on dayside magnetospheric phenomena. It is five years since the preceding Workshop on "Electromag netic Coupling in the Polar Clefts and Caps" was held at Lillehammer in September 1988.