Download Free Structure And Development Of Retinal Ganglion Cells Book in PDF and EPUB Free Download. You can read online Structure And Development Of Retinal Ganglion Cells and write the review.

Fundamental to our understanding about the function of the visual system is a basic knowledge of the structural components of neurons that comprise the circuit. The goal of the work described here aims to elucidate the structural, developmental, and molecular architecture of retinal ganglion cells (RGCs), using the mouse as a model system. I address three fundamental questions regarding synaptic specificity. First, do RGCs, whose dendrites are hallmarks of laminar specificity within the retina, also display laminar specificity of their axon terminals in the brain? To test this, I survey the axon terminal morphologies of different RGC subtypes and show that much like their dendrites, the axon terminals also display laminar specificity within the superior colliculus (SC). Second, what are the structural changes that take place over development that result in targeting of RGC axons to their proper target cells in the dorsal lateral geniculate (dLGN)? By observing the structural development of a single subtype of RGC I demonstrate that, in the retinogeniculate system, a dominant mechanism of synapse refinement is the growth and redistribution of synapses along the axon arbor. Finally, what are the molecular mechanisms that mediate laminar specificity? Sidekicks are synaptic cell adhesion molecules that are thought to mediate laminar specificity of dendrites in the chick retina. Functional studies would benefit from using mice, where genetic tools are more readily available. I show that Sidekick1 and 2 are localized to restricted sublaminae within the mouse retina, and is also present in other sensory neurons. The expression analysis is a necessary first step, and sets the foundation for studying the functional role of Sidekicks in ongoing work with loss-of-function mouse models.
This advanced text, first published in 2006, takes a developmental approach to the presentation of our understanding of how vertebrates construct a retina. Written by experts in the field, each of the seventeen chapters covers a specific step in the process, focusing on the underlying molecular, cellular, and physiological mechanisms. There is also a special section on emerging technologies, including genomics, zebrafish genetics, and stem cell biology that are starting to yield important insights into retinal development. Primarily aimed at professionals, both biologists and clinicians working with the retina, this book provides a concise view of vertebrate retinal development. Since the retina is 'an approachable part of the brain', this book will also be attractive to all neuroscientists interested in development, as processes required to build this exquisitely organized system are ultimately relevant to all other parts of the central nervous system.
Pituitary Adenylate Cyclase-Activating Polypeptide is the first volume to be written on the neuropeptide PACAP. It covers all domains of PACAP from molecular and cellular aspects to physiological activities and promises for new therapeutic strategies. Pituitary Adenylate Cyclase-Activating Polypeptide is the twentieth volume published in the Endocrine Updates book series under the Series Editorship of Shlomo Melmed, MD.
This is a remarkable time to study the vertebrate retina, either as a model for the brain or to understand the first steps in vison. We have known about the diversity of retinal neurons and glia for more than one hundred years, and we are now extending these findings and making new discoveries about retinal cell types by analyzing gene expression in single cells. We have made significant progress toward our ultimate goals of describing the neural circuits in the retinas at the level of connections between identified populations of neurons and understanding neuronal and glial cell function at the molecular level. We have also made great strides toward understanding retinal development and the etiology of retinal diseases. Physiologists are now using more realistic stimuli and modern analytical methods to analyze the mechanisms underlying light responses of retinal neurons, and this has led to more accurate computational models of neural circuits in the retina. My colleague at the McGovern Medical School in Houston, Steve Massey, has made many important contributions to this field, both as a researcher and as a mentor, and he is planning his retirement. Judith Ogilvie, Christophe Ribelayga, Chai-an Mao and I will dedicate this issue to him and plan to publish some of his latest work. This Research Topic will include mini-reviews and brief communications about neurons and neural circuits in vertebrate retinas. The scope will be very broad, including anatomical, physiological, psychophysical and computational approaches to this topic. Potential topics include, but are not restricted to: • Development. morphology and synaptic connections of neuronal types • Light responses, spontaneous activity and membrane properties of retinal neurons • Gene expression and other aspects of cell biology of identified retinal neurons • Release of neurotransmitters and modulators and their effects in the retina • Structure and function of electrical synapses in the retina • Neural circuits that mediate responses to color, contrast and movement • Roles of neuroglia in retinal development, homeostasis and light responses • Contributions of neural circuits in the retina to visual perception • Evolution of neuronal types and neural circuits in the retina • Novel techniques for analyzing retinal neurons and neural circuits • Non-invasive methods to analyze retinal structure and function • Etiology of retinal diseases and potential new therapies • Directions for future research on the vertebrate retina
Development of the Visual System presents a selection of current studies that clearly illustrate principles of visual system development. These range from retinal development in fish and frogs to the effects of abnormal visual experience on the primary visual cortex of the cat. The book is unique in addressing four specific and fundamental aspects of development: cell lineage and cell fate, specificity and targeting of axons, specification of visual cortex, and correlates of the critical period. Encompassing technical advances in cellular and molecular biology and in video imaging and microscopy, contributions in each of these areas provide new information at the cellular and molecular levels to complement the now classic descriptions of visual development previously available at the level of neural systems.ContributorsKaren L. Allendoerfer, David M. Altshuler, Antonella Antonini, Seymour Benzer, Edward M. Callaway, Constance L. Cepko, Hollis T. Cline, Max S. Cynader, N. W. Daw, Scott E. Fraser, K. Fox, Eckhard Friauf, Anirvan Ghosh, R. W. Guillery, William A. Harris, Christine E. Holt, Lawrence C. Katz, Susan McConnell, Pamela A. Raymond, Thomas A. Reh, Carla J. Shatz, Michael P. Stryker, Claudia A. 0. Stuermer, Mriganka Sur, David L. Turner, T. N. Wiesel
This comprehensive guide to current research captures the first wave of studies in the field, with fifty-nine chapters by leading scholars that demonstrate the usefulness of mouse models as a bridge between experimental and clinical research. The opening chapters introduce the mouse as a species and research model, discussing such topics as the mouse's evolutionary history and the mammalian visual system. Subsequent sections explore more specialized subjects, considering optics, psychophysics, and the visual behaviors of mice; the organization of the adult mouse eye and central visual system; the development of the mouse eye (including comparisons to human development); the development and plasticity of retinal projections and visuotopic maps; mouse models for human eye disease (including glaucoma and cataracts); and the application of advanced genomic technologies (including gene therapy and genetic knockouts) to the mouse visual system. Readers of this reference will see th.
The last 20 years of research have been marked by exceptional progress in understanding the organization and functions of the primate visual system. This understanding has been based on the wide application of traditional and newly emerging methods for identifying the functionally significant subdivisions of the system, their interconnections, the
Development and Organization of the Retina offers an invaluable survey of contemporary research issues and methods dealing with the retina and retinal projections. The book's 19 chapters report on investigations into two areas: research into the organization of the mature retina and work on developmental issues. A sampling of chapter topics includes -- embryonic patterning of cone subtypes in the mammalian retina -- synaptic transmission between retinal neurons -- scaling the retina, macro and micro -- retinal ganglion cell axonal transport, and more.