Download Free Structure And Collisions Of Ions And Atoms Book in PDF and EPUB Free Download. You can read online Structure And Collisions Of Ions And Atoms and write the review.

The central subject of this volume is the atomic and molecular physics of heavy par ticles as investigated with charged particle accelerators. The natural division be tween atomic structure and ion-atom collision studies, and the similar division be tween the theoretical and experimental branches of these subjects, are reflected in a parallel subdivision into corresponding chapters. In addition, one chapter is de voted to the important interface between atomic and molecular physics with condensed matter physics. A principal aim of the present volume is to provide a compact de scription of a number of current interests and trends within the heavy particle structure and collisions field in a sufficiently general, non-specialized way that interested scientists who wish to become acquainted with such interests and trends can do so without becoming bogged down in excessive archival detail. It is, therefore, hoped that the book will be of some use to advanced students who seek a general in troduction to these subjects. Numerous, more specialized, archival review articles are frequently referred to in each chapter for the benefit of those who seek more detailed knowledge about particular topics discussed. The editor wishes to acknowledge the support of two U. S. government agencies: the Office of Naval Research and the National Science Foundation, during the preparation of this volume. Sincere thanks are due Mrs. Betty Thoe for her excellent editorial work on the various manuscripts and Mrs.
Intended for advanced students of physics, chemistry and related disciplines, this text treats the quantum theory of atoms and ions within the framework of self-consistent fields. Data needed for the analysis of collisions and other atomic processes are also included.
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.
Atomic collisions offer some unique opportunities to study atomic structure and reaction mechanisms in experiment and theory, especially for projectiles of high atomic number provided by modern accelerators. The book is meant as an introduction into the field and provides some basic theoretical understanding of the atomic processes occurring when a projectile hits another atom. It also furnishes the tools for a mathematical description, however, without going deeper into the technical details, which can be found in the literature given. With this aim, the focus is on reactions, in which only a single active electron participates. Collisional excitation, ionization and charge transfer are discussed for collision velocities ranging from slow to comparable to the speed of light. For the highest projectile velocities, energy can be converted into mass, so that electron-positron pairs are created. In addition to the systematic treatment, a theoretical section specializes on electron-electron correlations and three chapters are devoted to selected highlights bordering to surface science and to physics with antiprotons. * Simple access to the theory of collisions between ions and atoms * Systematic treatment of basic features needed for an understanding * Mathematical details are omitted and referred to references * In order to bear out the essential ideas most clearly, a single active electron is assumed in most cases * In selected examples, theoretical results are confronted with experiment * Discussion supported by a large number of illustrations * Selected highlights in borderline fields are presented
A 1997 monograph on simulation for condensed matter physicists, materials scientists, chemists and electrical engineers.
An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.
Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
- The first book covering a broad range of physical and chemical problems of atomic cluster physics in the context of physics of atomic and molecular collisions bull; Contains contributions from leading experts in the field bull; Considers both free and supported cluster systems bull; Provides both a general introduction to the field and describes its very recent developments -- ideal for graduate and post-graduate students new to the area as well as specialists in atomic cluster physics bull; Useful for comprehensive lecture courses in quantum mechanics, condensed matter physics and other courses in which complex finite systems like atoic clusters are relevant
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
Comprehensive guide to an important materials science technique for students and researchers.