Download Free Structural Stability Of Linear Random Dynamical Systems Book in PDF and EPUB Free Download. You can read online Structural Stability Of Linear Random Dynamical Systems and write the review.

This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.
This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.
Nonlinear systems with random structures arise quite frequently as mathematical models in diverse disciplines. This monograph presents a systematic treatment of stability theory and the theory of stabilization of nonlinear systems with random structure in terms of new developments in the direct Lyapunov's method. The analysis focuses on dynamic systems with random Markov parameters. This high-level research text is recommended for all those researching or studying in the fields of applied mathematics, applied engineering, and physics-particularly in the areas of stochastic differential equations, dynamical systems, stability, and control theory.
For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.
The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.
This volume contains the lecture notes written by the four principal speakers at the C.I.M.E. session on Dynamical Systems held at Montecatini, Italy in June 1994. The goal of the session was to illustrate how methods of dynamical systems can be applied to the study of ordinary and partial differential equations. Topics in random differential equations, singular perturbations, the Conley index theory, and non-linear PDEs were discussed. Readers interested in asymptotic behavior of solutions of ODEs and PDEs and familiar with basic notions of dynamical systems will wish to consult this text.
Senior probabilists from around the world with widely differing specialities gave their visions of the state of their specialty, why they think it is important, and how they think it will develop in the new millenium. The volume includes papers given at a symposium at Columbia University in 1995, but papers from others not at the meeting were added to broaden the coverage of areas. All papers were refereed.
Nonlinear systems with random structures arise quite frequently as mathematical models in diverse disciplines. This monograph presents a systematic treatment of stability theory and the theory of stabilization of nonlinear systems with random structure in terms of new developments in the direct Lyapunov's method. The analysis focuses on dynamic sys
The finite element method (FEM) can be successfully applied to various field problems in solid mechanics, fluid mechanics and electrical engineering. This text discusses finite element methods for structures with large stochastic variations.
Ocean structures, including ships, boats, piers, docks, rigs and platforms, are subject to fair weather wind and waves, as well as violent storms. A scientific analysis of these structures, under varying conditions, requires a mix of civil engineering, physics and applied mathematics. Chapters by experts in these fields are presented which explore the nonlinear responses of ocean structures to stochastic forcing. Theoretical methods calculate aspects of time, frequency and phase space responses. Probabilities governed by stochastic differential equations arc investigated directly or through moment correlations, such as power spectra. Calculations can also involve level crossing statistics and first passage times. Tiffs book will help scientists study stochastic nonlinear equations and help engineers design for short term survivability of structures in storms and long life in the face of everyday fatigue.