Download Free Structural Renovation In Concrete Book in PDF and EPUB Free Download. You can read online Structural Renovation In Concrete and write the review.

The mechanisms by which buildings and infrastructures degrade are complex, as are the procedures and methods for inspection and for rehabilitation.This book examines the various problems caused by non-uniform deformation changes, poor durability, and natural and human disasters such as earthquakes and fire. Attention is given to the causes and mech
Make any renovation job go smoother. Building renovation, conservation and reuse represents more than half of all construction work - and is projected to increase to 80% by 2004. Structural Renovation of Buildings, by Alexander Newman, puts a single, convenient source of information about all aspects of structural renovation and strengthening of buildings at your fingertips. While its focus is largely on low and midrise buildings, you can apply the principles it clarifies to buildings of any size - steel-framed, masonry, or wood. Whether you're repairing deteriorated concrete...rehabilitating slabs on grade...strengthening lateral-load resisting systems...renovating a building facade...handling seismic upgrades or fire damage, you'll find this time-and-trouble-saving guide loaded with practical tips, methods, and design examples. It's also heavily illustrated with autoCAD generated details, supplier illustrations of materials, procedural techniques, and much, much more.
The mechanisms by which buildings and infrastructures degrade are complex, as are the procedures and methods for inspection and for rehabilitation. This book examines the various problems caused by non-uniform deformation changes, poor durability, and natural and human disasters such as earthquakes and fire. Attention is given to the causes and mechanisms of the deterioration. General procedures and commonly used techniques for inspection and evaluation of existing infrastructures are introduced. The desk study, destructive test, and non-destructive test are discussed – in particular the newly developed non-destructive methods for deterioration monitoring. The book then moves on to conventional renovation techniques such as patch and steel plate strengthening, which meet the requirements of normal practice. Special attention is paid to compatibility between repair materials and degraded materials. Fibrous composite materials are then introduced as a basis for innovative repair techniques, and different fibre and matrix properties are outlined, as are newly developed inorganic binders as a matrix for fibrous composites. Finally, advanced rehabilitation techniques using fibrous composite are described. Fundamental issues such as bonding and failure mechanisms are then discussed in detail. Fibrous composite strengthening techniques for beam, wall, column and slabs are covered, including shear strengthening, flexural strengthening, and fillet winding, as are codes of practice for retrofitting with fibrous composites. This caters to students and academics world-wide and serves as a "tool book" for concrete and structural engineering professionals.
From parking garages to roads and bridges, to structural concrete, this comprehensive book describes the causes, effects and remedies for concrete wear and failure. Hundreds of clear illustrations show users how to analyze, repair, clean and maintain concrete structures for optimal performance and cost effectiveness. This book is an invaluable reference for planning jobs, selecting materials, and training employees. With information organized in all-inclusive units for easy reference, this book is ideal for concrete specialists, general contractors, facility managers, civil and structural engineers, and architects.
A construction material that once was innovative and modern and then fell somewhat into disrepute through some of the quite radical post-war architecture, concrete is today very popular with planners and builders due to its multifaceted nature. The material offers enormous potential through its extensive load-bearing capacities but also due to the diversity of its properties and surface characteristics. In addition to the technical possibilities customarily attributed to concrete construction, the construction material is on the ascendant not least due to the current debate regarding energy efficiency and sustainability, since it seems tailor-made for the realization of the relevant requirements. It is not just the design and construction of concrete load-bearing structures that are the focus of this publication, but also the materiality and thus the haptic and sensuous side of the material in particular. That's because visible concrete in "smooth gray flawless" quality is not everything that concrete has to offer. Even designers and interior decorators develop furniture and space innovations of unimagined sensuality. The Modern Concrete Construction Manual provides the planner with well-founded expert information regarding the construction material of concrete, ranging from manufacturing to materiality to the design of concrete load-bearing structures, including current options for digital design and production processes. As a standard reference volume, the publication offers comprehensive and detailed insights regarding topics including cost-effectiveness, energy and sustainability, renovation, design and interior decoration. An extensive index of works with successful real-life examples provides inspiration and invites the reader to make modern use of a classical construction material.
A wealth of recent research into the continued deterioration of reinforced concrete structures has led to a review of methods of investigation and repair techniques. This thoroughly revised and updated new edition brings together the fundamental aspects of this world wide problem and offers advice on how investigations, diagnosis and consequent rem
Understanding and recognising failure mechanisms in concrete is a fundamental pre-requisite to determining the type of repair, or whether a repair is feasible. This title provides a review of concrete deterioration and damage, as well as looking at the problem of defects in concrete. It also discusses condition assessment and repair techniques.Part one discusses failure mechanisms in concrete and covers topics such as causes and mechanisms of deterioration in reinforced concrete, types of damage in concrete structures, types and causes of cracking and condition assessment of concrete structures. Part two reviews the repair of concrete structures with coverage of themes such as standards and guidelines for repairing concrete structures, methods of crack repair, repair materials, bonded concrete overlays, repairing and retrofitting concrete structures with fiber-reinforced polymers, patching deteriorated concrete structures and durability of repaired concrete.With its distinguished editor and international team of contributors, Failure and repair of concrete structures is a standard reference for civil engineers, architects and anyone working in the construction sector, as well as those concerned with ensuring the safety of concrete structures. - Provides a review of concrete deterioration and damage - Discusses condition assessment and repair techniques, standards and guidelines
This new book on the fracture mechanics of concrete focuses on the latest developments in computational theories, and how to apply those theories to solve real engineering problems. Zihai Shi uses his extensive research experience to present detailed examination of multiple-crack analysis and mixed-mode fracture.Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field with extensive new research and development. In recent years many different models and applications have been proposed for crack analysis; the author assesses these in turn, identifying their limitations and offering a detailed treatment of those which have been proved to be robust by comprehensive use. After introducing stress singularity in numerical modelling and some basic modelling techniques, the Extended Fictitious Crack Model (EFCM) for multiple-crack analysis is explained with numerical application examples. This theoretical model is then applied to study two important issues in fracture mechanics - crack interaction and localization, and fracture modes and maximum loads. The EFCM is then reformulated to include the shear transfer mechanism on crack surfaces and the method is used to study experimental problems. With a carefully balanced mixture of theory, experiment and application, Crack Analysis in Structural Concrete is an important contribution to this fast-developing field of structural analysis in concrete. - Latest theoretical models analysed and tested - Detailed assessment of multiple crack analysis and multi-mode fractures - Applications designed for solving real-life engineering problems
This book highlights all the rapid changes occurring in the understanding of the behavior and design of composite steel-concrete structures and links them to a variety of international standards. It addresses the needs created by the increasing internationalization of engineering practices and the need for structural engineers to be adept in design provisions from more than their home nations. It offers an in-depth treatment of the fundamental behavior and design of composite steel-concrete building structures incorporating beams, columns, joints, slabs, and systems.