Download Free Structural Materials And Global Climate Book in PDF and EPUB Free Download. You can read online Structural Materials And Global Climate and write the review.

This primer on greenhouse gas emissions for the structural engineering community focuses on the impact of structural materials and systems on global climate.
Soak up carbon into beautiful, healthy buildings that heal the climate "Green buildings" that slash energy use and carbon emissions are all the rage, but they aren't enough. The hidden culprit is embodied carbon — the carbon emitted when materials are mined, manufactured, and transported — comprising some 10% of global emissions. With the built environment doubling by 2030, buildings are a carbon juggernaut threatening to overwhelm the climate. It doesn't have to be this way. Like never before in history, buildings can become part of the climate solution. With biomimicry and innovation, we can pull huge amounts of carbon out of the atmosphere and lock it up as walls, roofs, foundations, and insulation. We can literally make buildings out of the sky with a massive positive impact. The New Carbon Architecture is a paradigm-shifting tour of the innovations in architecture and construction that are making this happen. Office towers built from advanced wood products; affordable, low-carbon concrete alternatives; plastic cleaned from the oceans and turned into building blocks. We can even grow insulation from mycelium. A tour de force by the leaders in the field, The New Carbon Architecture will fire the imagination of architects, engineers, builders, policy makers, and everyone else captivated by the possibility of architecture to heal the climate and produce safer, healthier, and more beautiful buildings.
Environmental Carbon Footprints: Industrial Case Studies provides a wide range of industrial case-studies, beginning with textiles, energy systems and bio-fuels. Each footprint is associated with background information, scientific consensus and the reason behind its invention, methodological framework, assessment checklist, calculation tool/technique, applications, challenges and limitations. More importantly, applications of each indicator/framework in various industrial sectors and their associated challenges are presented. As case studies are the most flexible of all research designs, this book allows researchers to retain the holistic characteristics of real-life events while investigating empirical events. Includes case studies from various industries, such as textiles, energy systems and conventional and bio-fuels Provides the calculation tool/technique, applications, challenges and limitations for determining carbon footprints on an industry by industry basis Presents the background information, scientific consensus and reason behind each case study
This book provides insights into how we can protect our buildings, cities, infra-structures and lifestyles against risks associated with extreme weather and related social, economic and energy events. There are three new chapters present evidence of escalating rates of environmental change; and the authors explore the growing urgency for mitigation and adaptation responses that deal with the resulting challenges.
A comprehensive approach to design that integrates sustainable principles and design strategies for decarbonized construction Representing an international collaboration between academics and architects in the United States and Europe, Carbon: A Field Manual for Designers and Builders offers professionals in the field an approach to sustainable design that embraces building science principles, life-cycle analysis, and design strategies in carbon neutral construction. The book also contains background information on carbon in construction materials and in the building design process. This book is filled with illustrative diagrams and drawings that help evaluate the potential impact of design decisions for creating carbon emissions. Written by and for designers and builders, the book includes a compelling pair of case studies that explore carbon-reducing strategies, suggests steps for assessing a building's carbon footprint, and reviews carbon storages and circulation of materials. The guidelines detailed in the book can be adopted, replicated, and deployed to reduce carbon emissions and create more sustainable buildings. This important book: Offers an effective approach to sustainable design in construction Integrates building science principles, life-cycle analysis, and design strategies in carbon neutral construction Describes a methodology for quantifying the flow of carbon in the built environment Provides an analysis of carbon-reducing strategies based on a case study of a building designed by the authors Written for practicing professionals in architecture and construction, Carbon: A Field Guide for Designers and Builders is a must-have resource for professionals who are dedicated to creating sustainable projects.
This book deals with the present adverse effects of using precarious building materials on the ecology and human health. Also, the detailed discussions on the novel and greener construction materials and their utilization as an alternative to the conventional harmful existing methods and materials are also presented in the subsequent chapters. This book helps to fill the research gaps in the existing prior-art knowledge in the field of sustainable construction and green building materials and methods giving due importance to ecology and health, specifically to the fields of sustainable structural engineering, sustainable geotechnical engineering, sustainable road engineering, etc. This book helps in achieving a sustainable environment through possible adoption of innovative and ecological construction practices. Hence, this book acts as a practical workbook, mainly for the academicians and practicing engineers who are willing to work toward the consecrated building industry. It is a well-established fact that the constructions of the engineering structures consume more and more earth resources than any other human activities in the world. In addition, the construction-related activities will produce several million tons of greenhouse gases, toxic emissions, water pollutants, and solid wastes. This creates a huge impact on environment and causes severe health issues on humans and animals. It is thus important to create an eco-friendly construction environment which can satisfy the ecological and health requirements.
This book provides a single-source reference for whole life embodied impacts of buildings. The comprehensive and persuasive text, written by over 50 invited experts from across the world, offers an indispensable resource both to newcomers and to established practitioners in the field. Ultimately it provides a persuasive argument as to why embodied impacts are an essential aspect of sustainable built environments. The book is divided into four sections: measurement, including a strong emphasis on uncertainty analysis, as well as offering practical case studies of individual buildings and a comparison of materials; management, focusing in particular on the perspective of designers and contractors; mitigation, which identifies some specific design strategies as well as challenges; and finally global approaches, six chapters which describe in authoritative detail the ways in which the different regions of the world are tackling the issue.
new in paperback and at a student price first book to discuss the impact of the built environment on global warming contributions from foremost scientists and engineers on the subject offer a wide perspective
This book uses theories, hypotheses, policies, practical insights and case studies to introduce and elucidate green building materials for sustainable construction. Cement is the most widely used building material in construction; however, it is not sustainable, being responsible for 7% of global carbon dioxide emissions and consuming huge quantities of energy. In order to limit the ecological damage, sustainable building materials are needed. Ecosystems are a source of important lessons and models for transitioning the built environment onto a sustainable path that opens options for sustainable building material in construction. The book provides a guide for readers seeking knowledge on sustainable building materials with the potential to lower environmental impact by reducing CO2 emission throughout the building’s lifecycle. The book is motivated by recent rapid advances in sustainable building materials production, including green building materials made of industrial by-products and recycled wastes, earth materials, plant-based materials, microbial-based materials or supplementary cementitious materials, to reduce the environmental impacts of traditional building materials. Discussing the development and applications of various sustainable building materials, including related case studies, and addressing the environmental issue with a holistic and systematic approach that creates an ecology of construction for sustainability in infrastructures, it offers promising solutions to achieve renewable and sustainable building materials for the future.
"The International Resource Panel (IRP) was established to provide independent, coherent and authoritative scientific assessments on the use of natural resources and their environmental impacts over the full life cycle. The Panel aims to contribute to a better understanding of how to decouple economic growth from environmental degradation while enhancing well-being. The Secretariat is hosted by the United Nations Environment Programme. IRP assessments demonstrate the opportunities for governments, businesses and wider society to work together to create and implement policies that ultimately lead to sustainable resource management, including through better planning, technological innovation and strategic incentives and investments. Materials are vital to modern society, but their production is an important source of greenhouse gases. Emissions from material production are now comparable to those from agriculture, forestry, and land use change combined, yet they have received much less attention from the climate policy community. The IPR authors propose looking beyond energy efficiency to reduce global carbon footprint. This report was developed by the IRP in response to a request from the Group of 7. It conducts a rigorous assessment of the contribution of material efficiency to GHG abatement strategies. More concretely, it assesses the potential reduction of GHG emissions from material efficiency strategies applied in residential buildings and light duty vehicles, and reviews policies that address these strategies. The IRP modelling results show that increasing material efficiency can help enhance efforts in moving towards the 1.5° C target set by the Paris Agreement." -- Page 4 of cover