Download Free Structural Geology And Rock Engineering Book in PDF and EPUB Free Download. You can read online Structural Geology And Rock Engineering and write the review.

Professionals and students in any geology-related field will find this an essential reference. It clearly and systematically explains underground engineering geology principles, methods, theories and case studies. The authors lay out engineering problems in underground rock engineering and how to study and solve them. The book specially emphasizes mechanical and hydraulic couplings in rock engineering for wellbore stability, mining near aquifers and other underground structures where inflow is a problem.
The exploration and extraction of the earth's resources are key issues in global industrial development. In the 21st century, emphasis has increasingly being placed on geo-engineering safety, engineering accountability and sustainability. With focus on rock engineering projects, Structural Geology and Rock Engineering uses case studies and an integrated engineering approach to provide an understanding of projects constructed on or in rock masses. Based on Professors Cosgrove and Hudson's university teaching at Imperial College London, as well as relevant short course presentations, it explains the processes required for engineering modelling, design and construction.The first half of the book provides step-by-step presentations of the principles of structural geology and rock mechanics with special emphasis on the integration between the two subjects. The second half of the book turns principles into practice. A wealth of practical engineering examples are presented, including evaluations of bridge foundations, quarries, dams, opencast coal mining, underground rock engineering, historical monuments and stone buildings.This up-to-date, well-illustrated guide is ideal for teachers, researchers and engineers interested in the study and practice of rock-based projects in engineering.
Structural Geology is a groundbreaking reference that introduces you to the concepts of nonlinear solid mechanics and non-equilibrium thermodynamics in metamorphic geology, offering a fresh perspective on rock structure and its potential for new interpretations of geological evolution. This book stands alone in unifying deformation and metamorphism and the development of the mineralogical fabrics and the structures that we see in the field. This reflects the thermodynamics of systems not at equilibrium within the framework of modern nonlinear solid mechanics. The thermodynamic approach enables the various mechanical, thermal, hydrological and chemical processes to be rigorously coupled through the second law of thermodynamics, invariably leading to nonlinear behavior. The book also differs from others in emphasizing the implications of this nonlinear behavior with respect to the development of the diverse, complex, even fractal, range of structures in deformed metamorphic rocks. Building on the fundamentals of structural geology by discussing the nonlinear processes that operate during the deformation and metamorphism of rocks in the Earth's crust, the book's concepts help geoscientists and graduate-level students understand how these processes control or influence the structures and metamorphic fabrics—providing applications in hydrocarbon exploration, ore mineral exploration, and architectural engineering. - Authored by two of the world's foremost experts in structural geology, representing more than 70 years of experience in research and instruction - Nearly 300 figures, illustrations, working examples, and photographs reinforce key concepts and underscore major advances in structural geology
Until a few years ago, hydropower, road tunneling and mining were the main fields interested in rock mechanics. Now, however, rock mechanics is becoming increasingly important in many more branches - the most significant globally being the disposal of hazardous, especially radiaoctive, waste in deeply located repositories. This has raised a number of new aspects on the mechanical behaviour of large rock masses hosting repositories and of smaller rock elements forming the nearfield of tunnels and boreholes with waste containers. The geological background and above all rock structure form the basis of this book. The structural scheme proposed is referred to explain the scale-dependent behaviour of rock. Thus, the reason for differences in strength and strain properties of different types and volumes of rocks is shown in a very clear fasion, using simple material models and very basic numerical models.The author's academic background in both geology and soil and rock mechanics and his long experience in practical design and construction work has led to an unusually pedagogic way of dealing with the subject. The book is intended for use by consultants in engineering geology and waste disposal and by students of these subjects. However, engineers and geologists with a limited background in stress/strain and fracture theory and computer-based calculation methods will also find the book attractive.
Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.
This text provides an introduction for graduate students, as well as engineering geologists and geotechnical engineers. It is also relevant to those working in nuclear waste disposal and oil and gas production. The early chapters deal with fundamental mechanics and physics as they apply to rock masses. It provides an introduction to the geological processes that give rise to the nature of rock masses and control their mechanical behavior. It discusses stresses in the earth's crust and explains methods of measurement and prediction.
Rock Slope Engineering covers the investigation, design, excavation and remediation of man-made rock cuts and natural slopes, primarily for civil engineering applications. It presents design information on structural geology, shear strength of rock and ground water, including weathered rock. Slope design methods are discussed for planar, wedge, circular and toppling failures, including seismic design and numerical analysis. Information is also provided on blasting, slope stabilization, movement monitoring and civil engineering applications. This fifth edition has been extensively up-dated, with new chapters on weathered rock, including shear strength in relation to weathering grades, and seismic design of rock slopes for pseudo-static stability and Newmark displacement. It now includes the use of remote sensing techniques such as LiDAR to monitor slope movement and collect structural geology data. The chapter on numerical analysis has been revised with emphasis on civil applications. The book is written for practitioners working in the fields of transportation, energy and industrial development, and undergraduate and graduate level courses in geological engineering.
Geology Applied to Engineering bridges the gap between the two fields through its versatile application of the physical aspects of geology to engineering design and construction. The Second Edition elucidates real-world practices, concerns, and issues for today’s engineering geologists and geotechnical engineers. Both undergraduate and graduate students will benefit from the book’s thorough coverage, as will professionals involved in assessing sites for engineering projects, evaluating construction materials, developing water resources, and conducting tests using industry standards. West and Shakoor offer expanded coverage of important topics such as slope stability and ground subsidence and significant fields in engineering geology, such as highways, dams, tunnels, and rock blasting. In order to allow for the diverse backgrounds of geologists and engineers, material on the properties of minerals, rocks, and soil provides a working knowledge of applied geology as a springboard to more comprehensive subjects in engineering. Example problems throughout the text demonstrate the practical applications of soil mechanics, rock weathering and soils, structural geology, groundwater, and geophysics. Thought-provoking and challenging exercises supplement core concepts such as determining shear strength and failure conditions, calculating the depth needed for borings, reading and analyzing maps, and constructing stratigraphic cross sections.
Engineering Geology and Geotechnics discusses engineering survey methods. The book is comprised of 12 chapters that cover several concerns in engineering, such as building foundations, slopes, and construction materials. Chapter 1 covers site investigation, while Chapter 2 tackles geophysical exploration. Chapter 3 deals with slope and open excavation, while Chapter 4 discusses subsurface excavation. Foundation for buildings, reservoir, and dams and dam sites are also covered in the book. A chapter then tackles hydrogeology and underground water supply. The text also encompasses river and beach engineering. The last two chapters cover engineering seismology and construction materials. This book will be of great use to researchers, practitioners, and students of engineering.
Rock Engineering and Rock Mechanics: Structures in and on Rock Masses covers the most important topics and state-of-the-art in the area of rock mechanics, with an emphasis on structures in and on rock masses. The 255 contributions (including 6 keynote lectures) from the 2014 ISRM European Rock Mechanics Symposium (EUROCK 2014, Vigo, Spain, 27-29 Ma