Download Free Structural Chemistry Across The Periodic Table Book in PDF and EPUB Free Download. You can read online Structural Chemistry Across The Periodic Table and write the review.

This book is an expanded and updated version of Part III of the authors' previous work, Advanced Structural Inorganic Chemistry (OUP 2008). The original part deals with main-group elements, the rare-earth elements, transition-metal clusters, and supramolecular systems. In this new book, selected material from significant advances in the past decade has been added, with particular emphasis on compounds that exemplify new types of bonds such as sigma-hole, triel bond, tetrel bond, pnictogen bond, chalcogen bond, halogen bond, halogen-halogen interaction, aerogen bond, as well as quintuple and sextuple metal-metal bonds. Other new topics include actinide compounds, metallophilicity, heterometallic macrocycles and cages, com- and dis-proportionation reactions, hydrogen-bonded organic frameworks (HOFs), halogen-bonded organic frameworks, halogen-halogen interactions in supramolecular frameworks, covalent organic frameworks (COFs), and metal-organic frameworks (MOFs).
A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course students in crystallography, materials science, physical chemistry of solids.
This book is a revised and updated English edition of a textbook that has grown out of several years of teaching. The term "inorganic" is used in a broad sense as the book covers the structural chemistry of representative elements (including carbon) in the periodic table, organometallics, coordination polymers, host-guest systems and supramolecular assemblies. Part I of the book reviews the basic bonding theories, including a chapter on computational chemistry. Part II introduces point groups and space groups and their chemical applications. Part III comprises a succinct account of the structural chemistry of the elements in the periodic table. It presents structure and bonding, generalizations of structural trends, crystallographic data, as well as highlights from the recent literature.
This monograph is intended to give the reader an appreciation of the wealth of phases, elements and inorganic compounds, which crystallize in layer-type or two dimensional structures. Originally this work was planned as a short review article but the large number of phases made it grow out to the size of a book. As is evident from the arrangement of the chapters our point of view was gradually transmuting from geometric to chemical. Moreover, the decision about the compounds that should be discussed was taken only during the course of the work, as is partly evident from the sequence of the references. For chemical or geometrical reason we have included also certain layered chain and molecular structures as well as some layered structures whose layers are linked by hydrogen bonds, thus are in fact three-dimensional. Instead of writing only a review with pseudo-scientific interpretations that later turn out to be wrong anyway we thought it more profitable to include the crystallographic data which are scattered in various original articles and hand books but never in one single volume. We have transcribed many of the data in order to make them correspond with the standard settings of the International Tables for X-Ray Crystallography. The figures are consistent with the data given in the tables. We apologize for errors and hope that their number is at a reasonably low level in spite of the time pressure.
Intermetallic science is closely related to physics, chemistry, metallurgy, materials science & technology, and engineering. This book emphasizes the chemical aspects of this science, and therefore the mutual reactivity of metals and the characteristics of intermetallic compounds. Topics included are: • Phase diagrams of alloy systems. Many intermetallic systems form several compounds, generally not obeying common simple stoichiometric rules, which are often homogeneous in a certain range of compositions. The stability and extension of these phases are conveniently presented through phase diagrams. • Selected aspects of intermetallics structural chemistry, with emphasis on the solid state. The general structural characteristics of intermetallic phases are considered, with attention to nomenclature and to alternative and complementary methods of presenting crystal-chemical data. A brief account is given of derivative and degenerate structures, modular aspects of crystal structures, and of a few special groups of alloys such as quasicrystals and amorphous alloys. A number of selected structural prototypes with typical features, their possible grouping in structural “families and their distribution among different types of alloys are provided. • Intermetallic reactivity trends in the Periodic Table. Attention is given to a few selected elemental parameters such as electron configuration and valence electron number and to their changes along the Table, which act as reference factors of the intermetallic behaviour. As an example, the relationships are considered between crystal structure and the number of valence electrons per atom (or per formula) in various classes of compounds or solid solution phases. • Alloying behaviour systematics of intermetallic systems with a description of the intermetallic reactivity of each element, or group of elements, in the order of their position in the Periodic Table. For each pair of metallic elements, their capability to form intermediate phases is summarised by maps and schemes. • A description of small scale preparation methods of intermetallics. A number of interesting and significant peculiarities are, e.g., those related to their high melting points, insolubility in common solvents, etc. · Systematic treatment of alloying behaviour · Wide overview of intermetallic chemistry · Illustrated, with many examples
This book focuses on two main topics in fundamental structural chemistry: the properties of chemical bonding derived from the behavior of the microscopic particles and their wave functions, and the three-dimensional molecular and crystal structures. The principle that “structure determines properties and properties reflect structures” is clearly demonstrated. This book emphasizes practical examples linking structure with properties and applications which provide invaluable insight for students, thus stimulating their mind to deal with problems in the topics concerned.
This book explains key concepts in theoretical chemistry and explores practical applications in structural chemistry. For experimentalists, it highlights concepts that explain the underlying mechanisms of observed phenomena, and at the same time provides theoreticians with explanations of the principles and techniques that are important in property design. Themes covered include conceptual and applied wave functions and density functional theory (DFT) methods, electronegativity and hard and soft (Lewis) acid and base (HSAB) concepts, hybridization and aromaticity, molecular magnetism, spin transition and thermochromism. Offering insights into designing new properties in advanced functional materials, it is a valuable resource for undergraduates of physical chemistry, cluster chemistry and structure/reactivity courses as well as graduates and researchers in the fields of physical chemistry, chemical modeling and functional materials.
This book presents basic atomic theory as given in first and second year courses at university. It demonstrates that the structure of the Periodic Table as we know it is based on sound principles. Throughout the book, theoretical concepts are presented, along with the experimental evidence for them. Foundations are laid in the introductory chapter, which deals with fundamental particles, electromagnetic radiation and Heisenberg's uncertainty principle. Atomic orbitals are then described, using a minimum of mathematics, followed by a discussion of the electron configurations of the elements. Further chapters reveal the relationships between the electronic configurations of the elements and some properties of their atoms; and the variations in the properties of their fluorides and oxides across the periods and down the groups of the Periodic Table. Ideal for the needs of undergraduate chemistry students, Tutorial Chemistry Texts is a major new series consisting of short, single topic or modular texts concentrating on the fundamental areas of chemistry taught in undergraduate science courses. Each book provides a concise account of the basic principles underlying a given subject, embodying an independent-learning philosophy and including worked examples.
This volume is the fourth in the series and offers both quality and breadth. As a whole it reflects two increasingly discernible trends in modern structural chemistry. One trend is that parallel to the ever increasing specialization of techniques, there is a strong interaction between the techniques. This interaction crosses the boundaries between various experiments, between the experiments and computations, experiments and theory, and organic and inorganic chemistry. The other trend is the ever increasing penetration of the most modern aspects of structural chemistry the rest of chemistry, making the demarkation of structural chemistry increasingly fuzzy which is the most welcome development from a structural chemist's point of view.
A revised and updated English edition of a textbook based on teaching at the final year undergraduate and graduate level. It presents structure and bonding, generalizations of structural trends, crystallographic data, as well as highlights from the recent literature.