Download Free Structural Biomaterials Book in PDF and EPUB Free Download. You can read online Structural Biomaterials and write the review.

Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field
"This book should go a long way towards filling the communication gap between biology and physics in the area of biomaterials]. It begins with the basic theory of elasticity and viscoelasticity, describing concepts like stress, strain, compliance, and plasticity in simple mathematical terms. . . . For the non-biologist, these chapters provide a clear account of macromolecular structure and conformation. . . . Vincent's work] is a delight to read, full of interesting anecdotes and examples from unexpected sources. . . . I can strongly recommend this book, as it shows how biologists could use mechanical properties as well as conventional methods to deduce molecular structure."--Anna Furth, The Times Higher Education Supplement In what is now recognized as a standard introduction to biomaterials, Julian Vincent presents a biologist's analysis of the structural materials of organisms, using molecular biology as a starting point. He explores the chemical structure of both proteins and polysaccharides, illustrating how their composition and bonding determine the mechanical properties of the materials in which they occurincluding pliant composites such as skin, artery, and plant tissue; stiff composites such as insect cuticle and wood; and biological ceramics such as teeth, bone, and eggshell. Here Vincent discusses the possibilities of taking ideas from nature with biomimicry and "intelligent" (or self-designing and sensitive) materials.
Introduction to the structural materials in natural organisms and what we can learn from them to improve man-made technology, from nanotechnology to textiles to architecture. Emphasizes the mechanical properties of structural biomaterials, their contribution to the lives of organisms, and how these materials differ from man-made ones.
With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.
Combining materials science, mechanics, implant design and clinical applications, this self-contained text provides a complete grounding to the field.
The use of biologically derived polymers is emerging as an important component of sustainable economic development. Technical lignins, derivatives from naturally occurring lignin polymers in woody plants, are generated commercially in large quantities -- up to 70 million tons world-wide annually. Besides being burned as fuels, only a small percentage of these lignins are used for various applications because technical lignins present relatively unpredictable structural characteristics and are therefore unreliable feedstocks to make products with consistent and satisfactory quality. Over the past two decades, there has been great progress in the research and commercialisation of lignin-based products and processes that add significant value to lignins. This book provides critical reviews and the latest research results relating to selected fields of lignin structural analysis and applications. Featuring the significant advances in selected topics of the lignin research field, this reference book is for college students and scientists with the intent of promoting further research and innovations in this specialised field.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctiona
PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Covering materials science, tribology and applications Provides a complete reference for specialists in the field of plastics, biomaterials, biomedical engineering and medical device design and surgical applications