Download Free Structural Biology In Drug Metabolism And Drug Discovery Book in PDF and EPUB Free Download. You can read online Structural Biology In Drug Metabolism And Drug Discovery and write the review.

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
This is a comprehensive introduction to Landau-Lifshitz equations and Landau-Lifshitz-Maxwell equations, beginning with the work by Yulin Zhou and Boling Guo in the early 1980s and including most of the work done by this Chinese group led by Zhou and Guo since. The book focuses on aspects such as the existence of weak solutions in multi dimensions, existence and uniqueness of smooth solutions in one dimension, relations with harmonic map heat flows, partial regularity and long time behaviors. The book is a valuable reference book for those who are interested in partial differential equations, geometric analysis and mathematical physics. It may also be used as an advanced textbook by graduate students in these fields.
The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
The last decade has seen the confluence of several enabling technologies that have allowed protein crystallographic methods to live up to their true potential. Taken together, the numerous recent advances have made it possible to tackle difficult biological targets with a high probability of success: intact bacterial ribosomes have been structurally elucidated, as well as eukaryotic trans-membrane proteins like the potassium channel and GPCRs. It is now possible for medicinal chemists to have access to structural information on their latest small molecule candidates bound to the therapeutic target within days of compound synthesis, allowing structure guided ligand optimization to occur in "real time". Structure-Based Drug Discovery presents an array of methods used to generate crystal structures of biological macromolecules, how to leverage the structural information to design novel ligands anew, and how to iteratively optimize hits and convert them to leads. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Structure-Based Drug Discovery aims to provide scientists interested in adding SBDD to their arsenal of drug discovery methods with well-honed, up-to-date methodologies.
The modern pharmacopeia has enormous power to alleviate disease, and owes its existence almost entirely to the work of the pharmaceutical industry. This book provides an introduction to the way the industry goes about the discovery and development of new drugs. The first part gives a brief historical account from its origins in the mediaeval apothecaries' trade, and discusses the changing understanding of what we mean by disease, and what therapy aims to achieve, as well as summarising case histories of the discovery and development of some important drugs. The second part focuses on the science and technology involved in the discovery process: the stages by which a promising new chemical entity is identified, from the starting point of a medical need and an idea for addressing it. A chapter on biopharmaceuticals, whose discovery and development tend to follow routes somewhat different from synthetic compounds, is included here, as well as accounts of patent issues that arise in the discovery phase, and a chapter on research management in this environment. The third section of the book deals with drug development: the work that has to be undertaken to turn the drug candidate that emerges from the discovery process into a product on the market. - The definitive introduction to how a pharmaceutical company goes about its business of discovering and developing drugs. The second edition has a new editor: Professor Raymond Hill ● non-executive director of Addex Pharmaceuticals, Covagen and of Orexo AB ● Visiting Industrial Professor of Pharmacology in the University of Bristol ● Visiting Professor in the School of Medical and Health Sciences at the University of Surrey ● Visiting Professor in Physiology and Pharmacology at the University of Strathclyde ● President and Chair of the Council of the British Pharmacological Society ● member of the Nuffield Council on Bioethics and the Advisory Council on Misuse of Drugs. New to this edition: - Completely rewritten chapter on The Role of Medicinal Chemistry in the Drug Discovery Process. - New topic - DMPK Optimization Strategy in drug discovery. - New chapter on Scaffolds: Small globular proteins as antibody substitutes. - Totally updated chapters on Intellectual Property and Marketing - 50 new illustrations in full colour Features - Accessible, general guide to pharmaceutical research and development. - Examines the interfaces between cost and social benefit, quality control and mass production, regulatory bodies, patent management, and all interdisciplinary intersections essential to effective drug development. - Written by a strong team of scientists with long experience in the pharmaceutical industry. - Solid overview of all the steps from lab bench to market in an easy-to-understand way which will be accessible to non-specialists. From customer reviews of the previous edition: '... it will have everything you need to know on this module. Deeply referenced and, thus, deeply reliable. - Highly Commended in the medicine category of the BMA 2006 medical book competition - Winner of the Royal Society of Medicine Library Prize for Medical Book of the Year
This insightful book represents the experience and understanding of the global experts in the field and spotlights both the structural and medicinal chemistry aspects of drug design. The need to 'encode' the physiological factors of pharmacology, a key area, is explored.
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
The science and applied approaches of enzyme inhibition in drug discovery and development Offering a unique approach that includes both the pharmacologic and pharmaco-kinetic aspects of enzyme inhibition, Enzyme Inhibition in Drug Discovery and Development examines the scientific concepts and experimental approaches related to enzyme inhibition as applied in drug discovery and drug development. With chapters written by over fifty leading experts in their fields, Enzyme Inhibition in Drug Discovery and Development fosters a cross-fertilization of pharmacology, drug metabolism, pharmacokinetics, and toxicology by understanding the "good" inhibitions—desirable pharmacological effects—and "bad" inhibitions—drug–drug interactions and toxicity. The book discusses: The drug discovery process, including drug discovery strategy, medicinal chemistry, analytical chemistry, drug metabolism, pharmacokinetics, and safety biomarker assessment The manipulations of drug metabolizing enzymes and transporters as well as the negative consequences, such as drug–drug interactions The inhibition of several major drug target pathways, such as the GPCR pathway, the NFkB pathway, and the ion channel pathway Through this focused, single-source reference on the fundamentals of drug discovery and development, researchers in drug metabolism and pharmacokinetics (DMPK) will learn and appreciate target biology in drug discovery; discovery biologists and medicinal chemists will also broaden their understanding of DMPK.
Recent advances in drug discovery have been rapid. The second edition of Bioinformatics and Drug Discovery has been completely updated to include topics that range from new technologies in target identification, genomic analysis, cheminformatics, protein analysis, and network or pathway analysis. Each chapter provides an extended introduction that describes the theory and application of the technology. In the second part of each chapter, detailed procedures related to the use of these technologies and software have been incorporated. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Bioinformatics and Drug Discovery, Second Edition seeks to aid scientists in the further study of the rapidly expanding field of drug discovery.