Download Free Structural Aspects Of Supported Monometallic And Bimetallic Cat Book in PDF and EPUB Free Download. You can read online Structural Aspects Of Supported Monometallic And Bimetallic Cat and write the review.

With contributions from experts in supported metal catalysis from both the industry and academia, this book presents the latest developments in characterization and application of supported metals in heterogeneous catalysis. In addition to thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as vehicle emission control, the book also includes emerging areas where supported metal catalysis will make significant contributions to future developments, such as fuel cells and fine chemicals synthesis. The second edition of Supported Metals in Catalysis comes complete with new and updated chapters containing important summaries of research in a rapidly evolving field. Very few other books deal with this highly pertinent subject matter and, as such, it is a must-have for anyone working in the field of heterogeneous catalysis.
Horizons in Sustainable Industrial Chemistry and Catalysis, Volume 178, presents a comprehensive picture of recent developments in terms of sustainable industrial processes and the catalytic needs and opportunities to develop these novel routes. Each chapter includes an introduction and state-of-the-art in the field, along with a series of specific aspects and examples. The book identifies new opportunities for research that will help us transition to low carbon and sustainable energy and chemical production. Users will find an integrated view of the new possibilities in this area that unleashes new possibilities in energy and chemistry. - Combines an analysis of each scenario, the state-of-the art, and specific examples to help users better understand needs, opportunities, gaps and challenges - Offers an integrated view of new catalytic technologies that are needed for future use - Presents an interdisciplinary approach that combines broad expertise - Brings together experts in the area of sustainable industrial chemistry
Encapsulated Catalysts provides valuable information for chemists, chemical engineers, and materials scientists in this promising area. The book describes many kinds of encapsulated catalysts and their applications in chemistry, including organic, inorganic, hybrid, and biological systems. Unlike other works, which discuss traditional supports, this useful resource uniquely focuses on extremely important topics, such as the encapsulation effects on reactivity and selectivity, the difficulty of their separation from reaction mixture, and/or their sensitivity to reaction conditions, and the limit of their industrial applications. In addition, the book covers the immobilization of homogenous catalysts on inorganic or organic supports and how it enables the separation of homogenous catalysts, as well as the protection or reuse of catalysts. - Discusses one of the most promising advances in catalysis and recent developments in the area, including enzyme mimic catalysts and new nano-materials for catalyst encapsulation - Provides interdisciplinary coverage of organic, inorganic, and biological materials for encapsulation of catalysts - Describes various types of reactions which can be catalyzed in presence of encapsulated catalysts
This book is devoted to CO2 capture and utilization (CCU) from a green, biotechnological and economic perspective, and presents the potential of, and the bottlenecks and breakthroughs in converting a stable molecule such as CO2 into specialty chemicals and materials or energy-rich compounds. The use of renewable energy (solar, wind, geothermal, hydro) and non-fossil hydrogen is a must for converting large volumes of CO2 into energy products, and as such, the authors explore and compare the availability of hydrogen from water using these sources with that using oil or methane. Divided into 13 chapters, the book offers an analysis of the conditions under which CO2 utilization is possible, and discusses CO2 capture from concentrated sources and the atmosphere. It also analyzes the technological (non-chemical) uses of CO2, carbonation of basic minerals and industrial sludge, and the microbial-catalytic-electrochemical-photoelectrochemical-plasma conversion of CO2 into chemicals and energy products. Further, the book provides examples of advanced bioelectrochemical syntheses and RuBisCO engineering, as well as a techno-energetic and economic analysis of CCU. Written by leading international experts, this book offers a unique perspective on the potential of the various technologies discussed, and a vision for a sustainable future. Intended for graduates with a good understanding of chemistry, catalysis, biotechnology, electrochemistry and photochemistry, it particularly appeals to researchers (in academia and industry) and university teachers.
Issues in Chemistry and General Chemical Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Chemistry and General Chemical Research. The editors have built Issues in Chemistry and General Chemical Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Chemistry and General Chemical Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Chemistry and General Chemical Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
This contributed volume provides a critical review of research in the field of Electrochemical Promotion of Catalysis (EPOC). It presents recent developments during the past decade that have led to a better understanding of the field and towards applications of the EPOC concept. The chapters focus on the implementation of EPOC for developing sinter-resistant catalysts, catalysts for hydrogen production, ammonia production and carbon dioxide valorization. The book also highlights the developments towards electropromoted dispersed catalysts and for self-sustained electrochemical promotion which are currently expanding. This authoritative analysis of EPOC is useful for various scientific communities working at the interface of heterogeneous catalysis, solid state electrochemistry and materials science. It is of particular interest to groups whose research focuses on developments towards a better and more sustainable future.